Vitamin E protects against extraskeletal calcification in uremic rats fed high fat diets.

BMC Nephrol

Departamento Medicina y Cirugia Animal, Universidad de Cordoba, Campus Universitario Rabanales, Ctra Madrid-Cadiz km 396, 14014, Cordoba, Spain.

Published: December 2017

Background: High fat diets are implicated in the pathogenesis of metabolic syndrome, obesity and renal disease. Previous studies have revealed that high fat diets promote vascular calcification in uremic rats. Moreover, vitamin E has been shown to prevent uremic calcifications in genetically obese Zucker rats fed standard diet. The objective of this study was to investigate the influence of vitamin E supplementation on the development of extraskeletal calcifications in non-obese (wild type) uremic rats fed high fat diets.

Methods: Wistar rats (n = 32) were preconditioned by feeding either a normal (NF) or high fat (HF) diet for 45 days and subsequently were subjected to 5/6 nephrectomy (Nx). Just before performing the first Nx step, a blood sample (Pre-Nx) was obtained. After Nx rats were switched to a diet with 0.9% phosphorus and supplemented with calcitriol. Also, after Nx, half of the rats from each group (NF and HF) were treated with vitamin E (VitE) in the diet (30,000 mg/kg) and the other half were maintained on basic VitE requirements (27 mg/kg). Thus, rats were allotted to four experimental groups: Nx-NF (n = 8), Nx-NF-VitE (n = 8), Nx-HF (n = 8) and Nx-HF-VitE (n = 8). At the time of sacrifice (day 66), blood and tissue samples were obtained.

Results: Feeding a HF diet for 45 days did not increase body weight but elicited hyperglycemia, hypertriglyceridemia, an increase in plasma fibroblast growth factor 23 and a reduction in plasma calcitriol concentrations. After Nx, rats fed HF diet showed substantial extraskeletal calcification with aortic calcium content that was higher than in rats fed NF diet. Supplementation with VitE significantly (p < 0.05) reduced aortic (from 38.4 ± 8.8 to 16.5 ± 1.4 mg/g), gastric (from 5.6 ± 2.7 to 1.2 ± 0.4 mg/g) and pulmonary (from 1.8 ± 0.3 to 0.3 ± 0.2 mg/g) calcium content in rats on HF diets.

Conclusions: Uremic rats fed HF diets developed more severe extraosseous calcifications than their normocaloric-fed counterparts and dietary VitE supplementation protected against uremic calcifications in rats fed HF diets. Thus, eating energy-rich foods should be discouraged in patients with renal disease and their deleterious effect may be ameliorated with adequate antioxidant supply.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745642PMC
http://dx.doi.org/10.1186/s12882-017-0790-4DOI Listing

Publication Analysis

Top Keywords

rats fed
20
high fat
20
uremic rats
12
fat diets
12
rats
10
extraskeletal calcification
8
calcification uremic
8
fed high
8
diet 45 days
8
fed diet
8

Similar Publications

Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.

View Article and Find Full Text PDF

Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome has been exponentially increasing in recent decades. Thus, there is an increasing need for affordable and natural interventions for this disorder. We explored the effect of chrysin, a dietary polyphenol, on hepatic lipid and glycogen accumulation, metabolic dysfunction-associated fatty liver disease (MAFLD) activity score and oxidative stress and on hepatic and adipose tissue metabolism in rats presenting metabolic syndrome-associated conditions.

View Article and Find Full Text PDF

Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA.

View Article and Find Full Text PDF

Insulin Receptor Substrate-2 Regulates the Secretion of Growth Factors in Response to Amino Acid Deprivation.

Int J Mol Sci

January 2025

Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!