Unlabelled: The objective of this study was to develop an injectable and biocompatible hydrogel that can deliver a cocktail of therapeutic biomolecules (secretome) secreted by human adipose-derived stem cells (hASCs) to the peri-infarct myocardium. Gelatin and Laponite® were combined to formulate a shear-thinning, nanocomposite hydrogel (nSi Gel) as an injectable carrier of secretome (nSi Gel+). The growth factor composition and the pro-angiogenic activity of the secretome were tested in vitro by evaluating the proliferation, migration and tube formation of human umbilical endothelial cells. The therapeutic efficacy of the nSi Gel + system was then investigated in vivo in rats by intramyocardial injection into the peri-infarct region. Subsequently, the inflammatory response, angiogenesis, scar formation, and heart function were assessed. Biocompatibility of the developed nSi Gel was confirmed by quantitative PCR and immunohistochemical tests which showed no significant differences in the level of inflammatory genes, microRNAs, and cell marker expression compared to the untreated control group. In addition, the only group that showed a significant increase in capillary density, reduction in scar area and improved cardiac function was treated with the nSi Gel+. Our in vitro and in vivo findings demonstrate the potential of this new secretome-loaded hydrogel as an alternative strategy to treat myocardial infarction.
Statement Of Significance: Stem cell based-therapies represent a possible solution to repair damaged myocardial tissue by promoting cardioprotection, angiogenesis, and reduced fibrosis. However, recent evidence indicates that most of the positive outcomes are likely due to the release of paracrine factors (cytokines, growth factors, and exosomes) from the cells and not because of the local engraftment of stem cells. This cocktail of essential growth factors and paracrine signals is known as secretome can be isolated in vitro, and the biomolecule composition can be controlled by varying stem-cell culture conditions. Here, we propose a straightforward strategy to deliver secretome produced from hASCs by using a nanocomposite injectable hydrogel made of gelatin and Laponite®. The designed secretome-loaded hydrogel represents a promising alternative to traditional stem cell therapy for the treatment of acute myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831493 | PMC |
http://dx.doi.org/10.1016/j.actbio.2017.12.025 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:
Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:
Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!