PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond.

Chem Rev

Department of Biological Sciences, Graduate School of Science , The University of Tokyo, Tokyo 113-0032 , Japan.

Published: April 2018

PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.7b00393DOI Listing

Publication Analysis

Top Keywords

pirna pathway
8
piwi-interacting rna
4
rna drosophila
4
drosophila biogenesis
4
biogenesis transposon
4
transposon regulation
4
regulation piwi-interacting
4
piwi-interacting rnas
4
rnas pirnas
4
pirnas germline-enriched
4

Similar Publications

Background: Myelodysplastic neoplasms (MDS) are heterogeneous hematopoietic disorders characterized by ineffective hematopoiesis and genome instability. Mobilization of transposable elements (TEs) is an important source of genome instability leading to oncogenesis, whereas small PIWI-interacting RNAs (piRNAs) act as cellular suppressors of TEs. However, the roles of TEs and piRNAs in MDS remain unclear.

View Article and Find Full Text PDF

Drosophila Modulo is Essential for Transposon Silencing and Developmental Robustness.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:

Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3).

View Article and Find Full Text PDF

Identification of serum small non-coding RNA as biomarkers for endometrial receptivity.

Genomics

January 2025

Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China. Electronic address:

Background: Current endometrial receptivity analysis is invasive, preventing embryo transfer during the biopsy cycle. This study aims to screen serum sncRNAs as non-invasive biomarkers for ERA tests.

Methods: The study included 12 infertile patients undergoing IVF-ET and ERA, whose serum samples were collected for high-energy sequencing technology to detect sncRNA expression profiles.

View Article and Find Full Text PDF

RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.

View Article and Find Full Text PDF

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!