A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seed germination in parasitic plants: what insights can we expect from strigolactone research? | LitMetric

Obligate root-parasitic plants belonging to the Orobanchaceae family are deadly pests for major crops all over the world. Because these heterotrophic plants severely damage their hosts even before emerging from the soil, there is an unequivocal need to design early and efficient methods for their control. The germination process of these species has probably undergone numerous selective pressure events in the course of evolution, in that the perception of host-derived molecules is a necessary condition for seeds to germinate. Although most of these molecules belong to the strigolactones, structurally different molecules have been identified. Since strigolactones are also classified as novel plant hormones that regulate several physiological processes other than germination, the use of autotrophic model plant species has allowed the identification of many actors involved in the strigolactone biosynthesis, perception, and signal transduction pathways. Nevertheless, many questions remain to be answered regarding the germination process of parasitic plants. For instance, how did parasitic plants evolve to germinate in response to a wide variety of molecules, while autotrophic plants do not? What particular features are associated with their lack of spontaneous germination? In this review, we attempt to illustrate to what extent conclusions from research into strigolactones could be applied to better understand the biology of parasitic plants.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erx472DOI Listing

Publication Analysis

Top Keywords

parasitic plants
16
germination process
8
plants
7
seed germination
4
parasitic
4
germination parasitic
4
plants insights
4
insights expect
4
expect strigolactone
4
strigolactone research?
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!