Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Understanding interactions between biocontrol agents and their pest hosts under climate change should assist implementation of biocontrol strategies, by identifying appropriate biocontrol agents for release or determining the optimal timing of releases. Species distribution models (SDMs) were applied to evaluate the distributions of Trichogramma ostriniae and its native host, Ostrinia furnacalis, in southeastern Asia, and a non-native host, Ostrinia nubilalis, in a novel range, North America, using MAXENT and CLIMEX modelling approaches.
Results: The models led to similar predictions about the expected distribution of the two species in Asia, and emphasized likely mismatches between host and natural enemy. Trichogramma ostriniae was predicted to occur in the summer corn region of China, with distribution limits linked to its sensitivity to cold, seasonality of radiation and precipitation. The modelled Ostrinia nubilalis distribution overlapped with the main corn production areas of the northeastern USA and Canada; temporary/seasonal suitable habitat was also predicted across the southeastern USA. Climate change scenarios are predicted to favour T. ostriniae over its hosts in northeastern China and North America.
Conclusion: The modelling approaches used here proved useful for assessing environmental factors linked to an egg parasitoid and its lepidopteran hosts and identifying areas potentially suitable for inundative releases. © 2017 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.4841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!