Polyelectrolyte complexes (PEC) of chitosan and ulvan were fabricated to study alkaline phosphatase (ALP) mediated formation of apatitic minerals. Scaffolds of the PEC were subjected to ALP and successful mineral formation was studied using SEM, Raman and XRD techniques. Investigation of the morphology via SEM shows globular structures of the deposited minerals, which promoted cell attachment, proliferation and extracellular matrix formation. The PEC and their successful calcium phosphate based mineralization offers a greener route of scaffold fabrication towards developing resorbable materials for tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2017.11.016 | DOI Listing |
Int J Biol Macromol
December 2024
Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Electronic address:
Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.
View Article and Find Full Text PDFGels
December 2024
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy.
Polyelectrolyte hydrogels are smart materials whose swelling behavior is governed by ionizable groups on their polymeric chains, making them sensitive to pH and ionic strength. This study combined experiments and modeling to characterize anionic hydrogels. Mechanical tests and gravimetric analyses were performed to track hydrogel mass over time and at a steady state under varying pH and salt concentrations.
View Article and Find Full Text PDFGels
December 2024
Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.
Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.
View Article and Find Full Text PDFLangmuir
December 2024
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Polyelectrolyte complex nanoparticles (PECNPs) often fully dissociate into individual polycations (PC) and polyanions (PA) at high salinities. Herein, we introduce a novel type of colloidally stable PECNP in which the PC is cross-linked, in this case branched polyethylenimine (PEI) to limit this dissociation, even in solutions up to 5.2 M NaCl or 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!