Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein structures are stabilized by different types of hydrogen bonds. However, unlike the DNA double helical structure, the N-H···N type of hydrogen bonds is relatively rare in proteins. N-H···N hydrogen bonds formed by imidazole groups of two histidine residues have not been investigated. We have systematically analyzed 5333 high-resolution protein structures with resolution 1.8 Å or better and identified 285 histidine pairs in which the nitrogen atoms of the imidazole side chains can potentially participate in N-H···N hydrogen bonds. The histidine pairs were further divided into two groups, neutral-neutral and protonated-neutral, depending on the protonation state of the donor histidine. Quantum chemical calculations were performed on imidazole groups adopting the same geometry observed in the protein structures. Average interaction energies between the interacting imidazole groups are -6.45 and -22.5 kcal/mol for neutral-neutral and protonated-neutral, respectively. Hydrogen bond interaction between the imidazole moieties is further confirmed by natural bond orbital analyses of the model compounds. Histidine residues involved in N-H···N hydrogen bonds are relatively more buried and have low B-factor values in the protein structures. N-H···N hydrogen bond formed by a pair of buried histidine residues can significantly contribute to the structural stability of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.7b11737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!