Bisphenol-A antagonizes the rapidly modulating effect of DHT on spinogenesis and long-term potentiation of hippocampal neurons.

Chemosphere

Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China. Electronic address:

Published: March 2018

Bisphenol A (BPA), a common environmental endocrine disruptor, modulates estrogenic, antiestrogenic, and antiandrogenic effects throughout the lifespan. Recent studies found more obvious adverse effect of BPA on some neurobehavior in males than that in females. In this study, BPA at 10-100 nM rapidly increased the densities of the dendrite spine and synapse in cultured hippocampal neurons of rats in vitro within 1 h. Co-treatment of BPA (100 nM) with dihydrotestosterone (DHT, 10 nM) or with 17β-E (10 nM) completely eliminated the promotion of DHT or 17β-E in the densities of the dendritic spine and synapse. Pretreatment of estrogen receptors (ERs) antagonist ICI182,780 but not of androgen receptors (ARs) antagonist flutamide (Flu) for 30min completely blocked BPA-enhanced densities of the dendritic spine and synapse. Pretreatment of flutamide for 30min before BPA and DHT completely rescued BPA-enhanced densities of the dendritic spine and synapse. Furthermore, pretreatment of ERK1/2 inhibitor U0126 or p38 inhibitor SB203580 entirely eliminated BPA-induced increases in the densities of the dendritic spine and synapse. Meanwhile, BPA (100 nM) enhanced long-term potentiation (LTP) induction of dentate gyrus in hippocampal slices of younger male rats, which was not blocked by co-incubation of flutamide but was inhibited by pretreatment of an P38 inhibitor SB203580. Co-application of BPA with DHT inhibited DHT-suppressed LTP. These results are the first demonstrating the antagonism of BPA to the rapid modification of DHT in synaptic plasticity. However, BPA alone rapidly promotes spinogenesis and synaptic activity through ER instead of AR, and both ERKs and p38 signaling pathways are involved in these processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.12.086DOI Listing

Publication Analysis

Top Keywords

spine synapse
20
densities dendritic
16
dendritic spine
16
synapse pretreatment
12
bpa
9
long-term potentiation
8
hippocampal neurons
8
bpa 100 nm
8
bpa-enhanced densities
8
bpa dht
8

Similar Publications

Background: Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.

View Article and Find Full Text PDF

AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.

Cell Mol Neurobiol

January 2025

Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.

Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.

View Article and Find Full Text PDF

Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release.

View Article and Find Full Text PDF

Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.

View Article and Find Full Text PDF

The study investigates how Sphingosine-1-phosphate receptor 3 (S1PR3) and the Chronic Unpredictable Mild Stress (CUMS) affects depression-like behaviors. The S1P/S1PR3 signaling pathway is known to play a role in mood regulation, but it is not yet fully understood how it is connected to depression. This study looks to further explore this topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!