Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2017.12.021DOI Listing

Publication Analysis

Top Keywords

draft genome
12
lactuca sativa
8
tizian draft
8
genome sequence
8
major resistance
8
resistance complex
8
compared salinas
8
salinas reference
8
reference genome
8
lettuce cultivar
8

Similar Publications

We present the genome of BDSA isolated from ready-to-eat (RTE) meat collected in Dhaka, Bangladesh. The genome displays the Listeria pathogenicity island 1 and virulence, stress response, and antimicrobial resistance genes. It was phylogenetically classified as ST7, and clustered with serotype 1/2a belonging to lineage II.

View Article and Find Full Text PDF

Molecular Characterization of Bovine in Equine Sarcoids in Egypt.

Vet Med Int

January 2025

Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA.

Bovine papillomaviruses (BPVs) commonly cause sarcoids in equines worldwide. Equine sarcoids (ESs) reduce the working ability of draft animals and produce untoward cosmetic changes in racing and dancing equine. In this study, nine horses and 16 donkeys with sarcoids were presented to Zagazig University Veterinary Clinic, Zagazig, Egypt.

View Article and Find Full Text PDF

Background: The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.

View Article and Find Full Text PDF

The Southern Ground Hornbill (SGH - Bucorvus leadbeateri) is one of the largest hornbill species worldwide, known for its complex social structures and breeding behaviours. This bird has been of great interest due to its declining population and disappearance from historic ranges in southern Africa. Despite being the focus of numerous conservation efforts, with research forming an integral part of these initiatives, there is still a substantial lack of knowledge regarding the molecular biology aspects of this bird species.

View Article and Find Full Text PDF

GDBr: genomic signature interpretation tool for DNA double-strand break repair mechanisms.

Nucleic Acids Res

January 2025

Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Large genetic variants can be generated via homologous recombination (HR), such as polymerase theta-mediated end joining (TMEJ) or single-strand annealing (SSA). Given that these HR-based mechanisms leave specific genomic signatures, we developed GDBr, a genomic signature interpretation tool for DNA double-strand break repair mechanisms using high-quality genome assemblies. We applied GDBr to a draft human pangenome reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!