AI Article Synopsis

  • The study investigated how Interferon-gamma (IFN-γ) and Tumor Necrosis factor-alpha (TNF-α) together affect human neuroblastoma cells by inducing apoptosis and regulating the expression of Par-4 and its interacting proteins.
  • Experiments involved treating various neuroblastoma cell lines and measuring cell viability, apoptosis markers, and gene expression changes, revealing that the combination of IFN-γ and TNF-α significantly increased apoptosis and Par-4 expression compared to individual treatments.
  • Results also indicated that the combination treatment led to the nuclear localization of Par-4 over time and showed a correlation between IFN-γ, TNF-α, and Par-4 expression in neuroblastoma patient data

Article Abstract

The objective of this study was to examine the combined effect of Interferon-gamma (IFN-γ) and Tumor Necrosis factor-alpha (TNF-α) on cytotoxicity and expression of prostate apoptosis response-4 (Par-4) and Par-4 interacting proteins B-cell lymphoma (Bcl-2), nuclear factor kappa-light-chain-enhancer of activated B cells/p65 subunit (NF-κB/p65), Ak mouse strain thymoma (Akt) in human neuroblastoma (NB) cells. Materials and methods included human neuroblastoma cell lines-SK-N-MC, SK-N-SH, and SH-SY5Y, which were treated with IFN-γ and TNF-α individually, or in combination, and were assessed for viability by tetrazolium (MTT) assay. Apoptosis was monitored by hypodiploid population (by flow cytometry), DNA fragmentation, Poly (ADP-ribose) polymerase (PARP) cleavage, and caspase-8 activity. Transcript level of Par-4 was measured by RT-PCR. Protein levels of Par-4 and suppressor of cytokine signaling 3 (SOCS-3) were assessed by immunoblotting. Cellular localization of Par-4 and p65 was examined by immunofluorescence. Unbiased transcript analysis for IFN-γ, TNF-α, and Par-4 were analyzed from three independent clinical datasets from neuroblastoma patients. In terms of results, SK-N-MC cells treated with a combination of, but not individually with, IFN-γ and TNF-α induced apoptosis characterized by hypodiploidy, DNA fragmentation, PARP cleavage, and increased caspase-8 activity. Apoptosis was associated with up-regulation of Par-4 mRNA and protein expression. Immunofluorescence studies revealed that Par-4 was localized exclusively in cytoplasm in SK-N-MC cells cultured for 24 h. but showed nuclear localization at 48 h. Treatment with IFN-γ and TNF-α together enhanced the intensity of nuclear Par-4. In gene expression, data from human neuroblastoma patients, levels of IFN-γ, and TNF-α have strong synergy with Par-4 expression and provide good survival advantage. The findings also demonstrated that apoptosis was associated with reduced level of pro-survival proteins-Bcl-2 and Akt and NF-κB/p65. Furthermore, the apoptotic effect induced by IFN-γ-induced Signal Transducer and Activator of Transcription-1(STAT-1), and could be due to down-regulation of suppressor of cytokine signaling-3 (SOCS3). The study concludes that a combinatorial approach using IFN-γ and TNF-α can be explored to maximize the effect in chemotherapy in neuroblastoma, and implies a role for Par-4 in the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874661PMC
http://dx.doi.org/10.3390/biomedicines6010004DOI Listing

Publication Analysis

Top Keywords

ifn-γ tnf-α
24
par-4
12
human neuroblastoma
12
tnf-α
8
par-4 expression
8
dna fragmentation
8
parp cleavage
8
caspase-8 activity
8
suppressor cytokine
8
neuroblastoma patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!