In the "big data" era, research biologists are faced with analyzing new types that usually require some level of computational expertise. A number of programs and pipelines exist, but acquiring the expertise to run them, and then understanding the output can be a challenge.The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org ) has created an end-to-end analysis platform that allows researchers to take their raw reads, assemble a genome, annotate it, and then use a suite of user-friendly tools to compare it to any public data that is available in the repository. With close to 113,000 bacterial and more than 1000 archaeal genomes, PATRIC creates a unique research experience with "virtual integration" of private and public data. PATRIC contains many diverse tools and functionalities to explore both genome-scale and gene expression data, but the main focus of this chapter is on assembly, annotation, and the downstream comparative analysis functionality that is freely available in the resource.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7463-4_4DOI Listing

Publication Analysis

Top Keywords

assembly annotation
8
public data
8
annotation comparative
4
comparative genomics
4
patric
4
genomics patric
4
patric bacterial
4
bacterial bioinformatics
4
bioinformatics resource
4
resource center
4

Similar Publications

With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG).

View Article and Find Full Text PDF

The genome sequence of a tachinid fly, (Fallén, 1810).

Wellcome Open Res

November 2024

Natural History Museum, London, England, UK.

We present a genome assembly from an individual male tachinid fly, (Arthropoda; Insecta; Diptera; Tachinidae). The genome sequence has a total length of 554.00 megabases.

View Article and Find Full Text PDF

Comparative genomic analysis of Fusarium oxysporum f. sp. lycopersici reveals telomeric duplications of a lineage-specific region carrying SIX8 and PSL1 and genome-wide expansion of Foxy transposable elements.

Int J Biol Macromol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.

View Article and Find Full Text PDF

Chromosome-level genome assembly, annotation, and population genomic resource of argali (Ovis ammon).

Sci Data

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.

Argali stands as the largest species among wild sheep in Central and East Asia, with a concerning rate of decline estimated at 30%. The intraspecific taxonomy of argali remains contentious due to limited genomic data and unclear geographic separation. In this study, we constructed a chromosome-level genome assembly and annotation for the Tibetan argali (O.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of three-spotted seahorse (Hippocampus trimaculatus) with a unique karyotype.

Sci Data

January 2025

Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China.

Three-spotted seahorse (Hippocampi trimaculata) is a unique fish with important economic and medicinal values, and its total chromosome number is potentially quite different from other seahorse species. Herein, we constructed a chromosome-level genome assembly for this special seahorse by integration of MGI short-read, PacBio HiFi long-read and Hi-C sequencing techniques. A 416.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!