Background/aim: To maximize success rate for development of HER2-targeted therapeutics, patient-derived xenograft (PDX) models reflecting HER2-positive gastric cancer (HER2 GC) patients were established.
Materials And Methods: GC tissues obtained from surgery of GC patients were implanted into immune-deficient mice, and tumor tissue of HER2 PDXs were verified of the patient-mimic HER2 expression by immunohistochemistry and explored for the feasibility by testing with Herceptin, the approved therapeutics and novel HER2 antibody therapeutics being developed.
Results: We obtained 5 cases of HER2 GC PDX models reflecting patient's GC tumor, consisting of 2 cases of HER2 3+ and 2 cases of HER2 2+. Novel HER2 antibody displayed significantly improved anti-cancer efficacy in combination with Herceptin.
Conclusion: The HER2 GC PDX models were successfully established to be utilized for preclinical evaluation of HER2-targeting drugs and combined therapies for GC treatment, as an ideal platform of personalized tools for precision therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.12220 | DOI Listing |
Cancer Lett
January 2025
Molecular Medicine Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
Oral cavity squamous cell carcinoma (OSCC), a leading subtype of head and neck cancer, exhibits high global incidence and mortality rates. Despite advancements in surgery and radiochemotherapy, approximately one-third of patients experience relapse. To improve current targeted and immunotherapy strategies for recurrent OSCC, we conducted multi-omics analyses on pretreatment OSCC samples (cohorts 1 and 2, n=137) and identified A3A and EGFR, both at the RNA and protein levels, as inversely expressed markers for patient stratification and response prediction.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Patient-derived xenografts (PDXs) can be improved by implantation of a humanized niche. Nevertheless, the overall complexity of the current protocols, as well as the use of specific biomaterials and procedures, limits the wider adoption of this approach. Here, we identify the essential minimum steps required to create the humanized scaffolds and achieve successful acute myeloid leukemia (AML) engraftment.
View Article and Find Full Text PDFFront Oncol
January 2025
BIOCEV, First Faculty of Medicine, Charles University, Prague, Czechia.
Introduction: Progressing myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) is an indication for hypomethylating therapy (HMA, 5-Azacytidine (AZA)) and a BCL2 inhibitor (Venetoclax, VEN) for intensive chemotherapy ineligible patients. Mouse models that engraft primary AML samples may further advance VEN + AZA resistance research.
Methods: We generated a set of transplantable murine PDX models from MDS/AML patients who developed resistance to VEN + AZA and compared the differences in hematopoiesis of the PDX models with primary bone marrow samples at the genetic level.
Adv Sci (Weinh)
January 2025
General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, Heilongjiang Province, 150086, China.
Intrahepatic cholangiocarcinoma (ICC), a formidable challenge in oncology, demands innovative biomarkers and therapeutic targets. This research highlights the importance of the circular RNA (circRNA) circPCSK6 and its peptide derivative circPCSK6-167aa in ICC. CircPCSK6 is significantly downregulated in both ICC patients and mouse primary ICC models, and its lower expression is linked to adverse prognosis, highlighting its pivotal role in ICC pathogenesis.
View Article and Find Full Text PDFHemasphere
January 2025
Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research UNSW Sydney Sydney New South Wales Australia.
Antibody-drug conjugates (ADCs) combining monoclonal antibodies with cytotoxic payloads are a rapidly emerging class of immune-based therapeutics with the potential to improve the treatment of cancer, including children with relapse/refractory acute lymphoblastic leukemia (ALL). CD123, the α subunit of the interleukin-3 receptor, is overexpressed in ALL and is a potential therapeutic target. Here, we show that pivekimab sunirine (PVEK), a recently developed ADC comprising the CD123-targeting antibody, G4723A, and the cytotoxic payload, DGN549, was highly effective in vivo against a large panel of pediatric ALL patient-derived xenograft (PDX) models ( = 39).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!