Crystal structure of d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase from Yersinia pseudotuberculosis.

Biochim Biophys Acta Proteins Proteom

College of Pharmacy, Ewha W. University, 52, Ewhayeodae-gil, Seoul, 03760, Republic of Korea. Electronic address:

Published: March 2018

The Gram-negative bacterium Yersinia pseudotuberculosis is the causative agent of yersiniosis. d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase (HddC) is the fourth enzyme of the GDP-d-glycero-α-d-manno-heptose biosynthesis pathway which is important for the virulence of the microorganism. Therefore, HddC is a potential target of antibiotics against yersiniosis. In this study, HddC from the synthesized HddC gene of Y. pseudotuberculosis has been expressed, purified, crystallized. Synchrotron X-ray data from a selenomethionine-substituted HddC crystal were also collected and its structure was determined at 2.0Å resolution. Structure analyses revealed that it belongs to the glycosyltransferase A type superfamily members with the signature motif GXGXR for nucleotide binding. Despite of remarkable structural similarity, HddC uses GTP for catalysis instead of CTP and UTP which are used for other major family members, cytidylyltransferase and uridylyltransferase, respectively. We suggest that EXXPLGTGGA and L(S/A/G)X(S/G) motifs are probably essential to bind with GTP and a FSFE motif with substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2017.12.005DOI Listing

Publication Analysis

Top Keywords

d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase
8
yersinia pseudotuberculosis
8
hddc
6
crystal structure
4
structure d-glycero-α-d-manno-heptose-1-phosphate
4
guanylyltransferase yersinia
4
pseudotuberculosis gram-negative
4
gram-negative bacterium
4
bacterium yersinia
4
pseudotuberculosis causative
4

Similar Publications

Child Neurology: Severe -Related Congenital Muscular Dystrophy With Rapidly Progressive Encephalopathy Leading to Infantile Death.

Neurology

February 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.

Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.

View Article and Find Full Text PDF

METTL3 alters capping enzyme expression and its activity on ribosomal proteins.

Sci Rep

November 2024

Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.

The 5' cap, catalyzed by RNA guanylyltransferase and 5'-phosphatase (RNGTT), is a vital mRNA modification for the functionality of mRNAs. mRNA capping occurs in the nucleus for the maturation of the functional mRNA and in the cytoplasm for fine-tuning gene expression. Given the fundamental importance of RNGTT in mRNA maturation and expression there is a need to further investigate the regulation of RNGTT.

View Article and Find Full Text PDF

Heat Stress Inhibits Pollen Development by Degrading mRNA Capping Enzyme ARCP1 and ARCP2.

Plant Cell Environ

February 2025

Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.

Pollen development and germination are critical for successful generation of offspring in plants, yet they are highly susceptible to heat stress (HS). However, the molecular mechanism underlying this process has not been fully elucidated. In this study, we highlight the essential roles of two mRNA capping enzymes, named Arabidopsis mRNA capping phosphatase (ARCP) 1 and 2, in regulating male and female gamete development.

View Article and Find Full Text PDF

A structure-based mechanism of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (MpaCobU) from Methylocapsa palsarum.

Int J Biol Macromol

September 2024

Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea. Electronic address:

Adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) is one of the key enzymes that participate in the biosynthesis of cobalamin, specifically lining the lower ligand 5,6-dimethylbenzimidazole in the α-position of cyclic tetrapyrrolidine. During this process, CobU exhibits two distinct activities: kinase and nucleotidyl transferase, using two nucleoside triphosphates. A structural study of CobU from Salmonella typhimurium showed that guanosine triphosphate binding induces a conformational rearrangement of helix 2.

View Article and Find Full Text PDF

The tRNA-histidine guanylyltransferase 1-like (), also known as induced in high glucose-1 (), encodes for an essential mitochondria-associated protein highly conserved throughout evolution, that catalyses the 3'-5' addition of a guanine to the 5'-end of tRNA-histidine (tRNA). Previous data indicated that THG1L plays a crucial role in the regulation of mitochondrial biogenesis and dynamics, in ATP production, and is critically involved in the modulation of apoptosis, cell-cycle progression and survival, as well as in cellular stress responses and redox homeostasis. Dysregulations of THG1L expression play a central role in various pathologies, including nephropathies, and neurodevelopmental disorders often characterized by developmental delay and cerebellar ataxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!