Purpose: The aim of this study was to measure physical and functional outcomes during the acute postoperative recovery in patients who underwent total knee arthroplasty. Motor imagery has been shown to decrease pain and promote functional recovery after both neurological and peripheral injuries. Yet, whether motor imagery can be included as an adjunct effective method into physical therapy programs following total knee arthroplasty remains a working hypothesis that we aim to test in a pilot study.

Method: Twenty volunteers were randomly assigned to either a motor imagery or a control group. Pain, range of motion, knee girth as well as quadriceps strength and Timed Up and Go Test time were the dependent variables during pre-test and post-test.

Results: The motor imagery group exhibited larger decrease of ipsilateral pain and knee girth, a slightly different evolution of range of motion and an increase of ipsilateral quadriceps strength compared to the control group. No effects of motor imagery on Timed Up and Go Test scores were observed.

Conclusion: Implementing motor imagery practice into the course of physical therapy enhanced various physical outcomes during acute postoperative recovery after total knee arthroplasty. According to this pilot study, motor imagery might be relevant to promote motor relearning and recovery after total knee arthroplasty.Partial effect-sizes should be conducted in the future. Implications for rehabilitation    Adding motor imagery to physical therapy sessions during the acute period following total knee arthroplasty:    • Enhances quadriceps strength.    • Alleviates pain.    • Enhances range of motion.    • Does not have any effect on basic functional mobility.    • Does not have any effect on knee girth.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09638288.2017.1419289DOI Listing

Publication Analysis

Top Keywords

motor imagery
36
total knee
24
knee arthroplasty
20
physical therapy
12
range motion
12
knee girth
12
quadriceps strength
12
motor
10
imagery
9
knee
9

Similar Publications

Background: Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Word norming datasets have become an important resource for psycholinguistic research, and they are based on the underlying assumption that individual differences are inconsequential to the measurement of semantic dimensions. In this pre-registered study we tested this assumption by examining whether individual differences in motor imagery are related to variance in semantic ratings. We collected graspability ratings (i.

View Article and Find Full Text PDF

The study aimed to assess the feasibility and potential efficacy of a non-motor intervention utilizing motor imagery (MI) and transcranial direct current stimulation (tDCS) to enhance motor function. The research involved a double-blind, randomized, controlled trial with three groups: MIActive, MISham, and Control. Participants engaged in a cognitively demanding obstacle course, with time and prefrontal activation (ΔO2Hb and ΔHHb) measured across three-time points (Baseline, Post-test, 1-week follow-up).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!