The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT receptor agonism, 5-HT receptor partial agonism, 5-HT, 5-HT, 5-HT receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off-rate than ondansetron in oocytes expressing 5-HT receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT receptors. Finally, in 5-HT receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2017.12.025DOI Listing

Publication Analysis

Top Keywords

5-ht receptor
36
5-ht
18
5-ht receptors
16
5-ht 5-ht
12
receptor
9
multimodal antidepressant
8
vortioxetine
8
antidepressant vortioxetine
8
rat hippocampus
8
hippocampus slices
8

Similar Publications

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II.

Neurosci Lett

December 2024

Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:

Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.

View Article and Find Full Text PDF

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

December 2024

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!