Synergistic effects between hydroxyl radicals and hydrated electrons on strengthening decomposition of an s-triazine compound: A combined experimental and theoretical study.

Chemosphere

Shanghai Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China. Electronic address:

Published: March 2018

The decomposition of an environmentally recalcitrant s-triazine compound, prometry (PMT), was carried out by experimental and theoretical approaches to study the combined effects of hydroxyl radicals (OH) and hydrated electrons (e). With the participation of strongly oxidative radicals OH and reductive radicals e induced by electron beam (EB), PMT obtained a good decomposition performance, which was obviously better than those methods simply using OH as the single active species. The evolution of cyanuric acid (CA) during the EB and UV irradiation processes elucidate that former method could efficiently decompose such chemically stable intermediate. The experiments of radical scavengers further suggest that OH was the predominant radical during PMT degradation, while e was beneficial to further decomposition and mineralization. Combined with the results of density functional theory (DFT) calculations, the strengthened synergistic effects between OH and e were proven. The calculations illustrated OH could attack the carbon-branch-chains of s-trazine ring and form OH-adducts rather than nitrogen oxides. Moreover, the presence of e could not only greatly change the geometry of the s-triazine ring, but also help cleaving alkyl chain on ring, thus facilitate the complete mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.12.097DOI Listing

Publication Analysis

Top Keywords

synergistic effects
8
effects hydroxyl
8
hydroxyl radicals
8
radicals hydrated
8
hydrated electrons
8
s-triazine compound
8
experimental theoretical
8
radicals
4
electrons strengthening
4
decomposition
4

Similar Publications

Efficient removal of Sb(III) from aqueous solution using TiO precipitated onto waste herb-residue biochar.

Environ Technol

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.

Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.

View Article and Find Full Text PDF

Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation.

View Article and Find Full Text PDF

Synergistic effects of colistin-rifampin-based triple antimicrobial combination therapy against Carbapenem-resistant Pseudomonas aeruginosa: a time-kill assay.

J Antimicrob Chemother

December 2024

Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.

Background: Our research aimed to investigate the potential of in vitro triple antimicrobial synergism against carbapenem-resistant Pseudomonas aeruginosa (CRPA) as a strategy to overcome antimicrobial resistance.

Methods: We used 12 CRPA blood isolates stocked in the Asian Bacterial Bank between 2016 and 2018. All isolates were tested by multi-locus sequencing and carbapenemase multiplex PCR.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!