Sub-surface assessment of hydrothermal ageing in zirconia-containing femoral heads for hip joint applications.

Acta Biomater

Mathys Orthopaedie GmbH, An den Trillers Bueschen 2, DE-07646 Moersdorf, Germany.

Published: March 2018

AI Article Synopsis

Article Abstract

Unlabelled: Zirconia-based materials have been used in orthopaedics since the 1980s, with large success, mainly thanks to transformation toughening. On the other hand, their main drawback is their potential sensitivity to hydrothermal ageing, i.e. tetragonal to monoclinic phase transformation on their surface in the presence of water. Hydrothermal ageing may result in roughness increase and microcracking of the surface. In this article the hydrothermal ageing behaviour of three medical-grade zirconia-based materials is assessed at high temperature and extrapolated to room or body temperature. The degradation is also characterized by FIB/SEM nano-tomography to better assess sub-surface evolutions. In both zirconia and alumina-toughened zirconia (ATZ), ageing results in the presence of a homogenous transformed layer of constant thickness whose growth rate is about 8 times slower in ATZ than in zirconia. Microcracking occurs in the entire transformed layer in zirconia, but was much less relevant in ATZ. Zirconia-toughened alumina (ZTA) is much less prone to ageing. In ZTA ageing results in a thin transformed layer in which the monoclinic fraction decreases with depth. No microcracking was observed in ZTA.

Statement Of Significance: This article details the microstructural evolution of the surface of three zirconia-based ceramics when exposed to water (hydrothermal ageing), and establishes a time-temperature equivalences of these evolutions. It shows that different zirconia-alumina composites do not degrade the same way: zirconia and alumina-toughened zirconia present a homogeneous degraded zone of constant thickness, whereas zirconia-toughened-alumina presents a gradient of transformation. These new findings will help understanding better the hydrothermal degradation of zirconia based materials, and in particular will facilitate a better prediction of the durability of zirconia-based devices such as orthopaedic implants and dental devices (implants, crowns, abutments…).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2017.12.021DOI Listing

Publication Analysis

Top Keywords

hydrothermal ageing
20
transformed layer
12
ageing
8
zirconia-based materials
8
water hydrothermal
8
zirconia alumina-toughened
8
alumina-toughened zirconia
8
constant thickness
8
zirconia
7
hydrothermal
6

Similar Publications

Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.

Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.

View Article and Find Full Text PDF

The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods.

View Article and Find Full Text PDF

Dissolved gas analysis (DGA) is an effective method for diagnosing potential faults in oil-immersed power transformers. Metal oxide semiconductor (MOS) gas sensors exhibit excellent performance. However, high operating temperatures can accelerate device aging, thereby reducing the reliability of online monitoring.

View Article and Find Full Text PDF

Simulation of oral environmental conditions through artificial aging of teeth for the assessment of enamel discoloration in orthodontics.

BMC Oral Health

December 2024

Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Melikgazi, 38039, Türkiye.

Background: The clinical performance of dental materials can be predicted via artificial aging approaches. The bracket bonding procedure may cause irreversible alterations to the enamel surface. The aim of this study was to introduce a novel artificial aging protocol and evaluate its effect on the discoloration of both bracket-bonded and unbonded teeth while also comparing the effects of four orthodontic adhesives on enamel color and whiteness.

View Article and Find Full Text PDF

Z-scheme CeO-TiO@CNT (CTC) heterojunction is fabricated using hydrothermal method and evaluated for removing mixed pollutants (MIX-P) from ciprofloxacin (CPF) and textile contaminations. CTC demonstrated ≈99% removal efficiency against MIX-P under solar irradiation of ≈10 lumens. High removal efficiency of CTC is attributed to reduced bandgap (E), 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!