Altitudinal distribution of Aedes indices during dry season in the dengue endemic area of Central Java, Indonesia.

Ann Parasitol

Department of Arboviral Diseases Control, Central-Java Provincial Health Office, Jalan Pierre Tendean 24, 50132 Semarang, Indonesia

Published: March 2018

Aedes mosquitoes, mainly Aedes aegypti and Aedes albopictus, are the primary and secondary vectors of dengue viruses in Indonesia, with transmission occurring by sucking blood. The density of the vectors is influenced by season and rainfall, but limited by altitude. The aim of the study is to describe the density and distribution of dengue vectors during the dry season based on the altitudes of recent dengue cases in five regencies of Central Java Province, Indonesia. Mosquito larvae and pupae were collected from the indoor and outdoor water containers from 253 houses within 50 m of houses occupied by a dengue patient. A considerable dengue vector population was found in all localities and altitudes based on the Aedes indices: an HI of 41.7% (15.0–70.6), CI of 33.6% (8.1–69.6) and BI of 57.1 (15.0–94.1). The highest indices were found in the highest altitude settlement; as the most common larval habitat in this village was a large-sized cement tank, larvivorous fish can act as effective predators in this case. This finding indicates an expansion of the dengue problem from low to high altitudes, causing a high potential for dengue transmission in all of the localities.

Download full-text PDF

Source
http://dx.doi.org/10.17420/ap6303.108DOI Listing

Publication Analysis

Top Keywords

aedes indices
8
dry season
8
dengue
8
central java
8
aedes
5
altitudinal distribution
4
distribution aedes
4
indices dry
4
season dengue
4
dengue endemic
4

Similar Publications

The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection.

View Article and Find Full Text PDF

Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks.

BMC Public Health

January 2025

Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.

Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.

Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.

View Article and Find Full Text PDF

Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.

View Article and Find Full Text PDF

Aedes albopictus (Skuse) and Aedes aegypti L. (Diptera: Culicidae) are invasive species known for their notable expansion capacity, which makes them relevant in the context of public health due to their role as vectors. In Argentina, these species coexist in a limited subtropical area in Northeastern part of the country.

View Article and Find Full Text PDF

A sequential study of Chikungunya fever cases notified in the urban setup of India.

J Family Med Prim Care

November 2024

Department of Community Medicine, Government Medical College, Surat, Gujarat, India.

Context: Chikungunya's resurgence highlights reporting and awareness challenges.

Aims: To analyze trends in 170 laboratory-confirmed Chikungunya cases in Urban Surat's Central Sentinel Surveillance (2016-2020), supplemented by a subset (n = 30) examining perceptions, attitudes, and risk reduction practices based on notification level.

Results: Notification rates peaked in 2017 (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!