This study was done in order to investigate time-dependent effect of AFB1 on expression of genes involving in cell cycle check point machinery at G, S, and M phases. For this purpose, 24 mature male Swiss albino mice were randomly divided into control and test groups. The animals in test group subdivided into three groups, which received the AFB1 at a daily dose of 20 µg/kg body weight, through intraperitoneal (i.p.) route, for 7, 14, and 21 days. The p21, p53, cyclin D1, CDK4, and ERα expressions at both mRNA and protein level were analyzed by using reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. Moreover, the tubular differentiation (TDI) and spermiogenesis (SPI) indices were analyzed. Finally, the testicular DNA fragmentation was assessed by using DNA Ladder test. Observations revealed that the AFB1 remarkably (P < .05) reduced cyclin D1, Cdk4, and ERα expression at both mRNA and protein levels. Up-regulated p21 and p53 expression was revealed in AFB1-received animals, which developed time dependently. Histological examinations exhibited a significant reduction in TDI and SPI indices. Finally, the AFB1 resulted in severe DNA fragmentation. Our data showed that the AFB1 by down-regulating the cyclin D1, Cdk4, and ERα expression adversely affects cyclin D1/Cdk4 and cyclin D1/ERα interactions. Moreover, the AFB1-induced overexpression of p21 (as a kinase inhibitor), in turn results in cell cycle arrest via inhibiting the Cdk4 interaction with cyclin D1. Finally, the AFB1-induced DNA damage triggers the p53-dependent apoptosis pathway independent to p21 overexpression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.22524 | DOI Listing |
Mol Biol Rep
January 2025
Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.
View Article and Find Full Text PDFActas Esp Psiquiatr
January 2025
Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.
Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) "Demokritos", 153 41 Aghia Paraskevi, Greece.
: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!