An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth.

Mycorrhiza

State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Published: February 2018

Leaf spot of perennial ryegrass (Lolium perenne) caused by Bipolaris sorokiniana is an important disease in temperate regions of the world. We designed this experiment to test for the combined effects of the arbuscular mycorrhizal (AM) fungus Claroideoglomus etunicatum and the grass endophyte fungus Epichloë festucae var. lolii on growth and disease occurrence in perennial ryegrass. The results show that C. etunicatum increased plant P uptake and total dry weight and that this beneficial effect was slightly enhanced when in association with the grass endophyte. The presence in plants of both the endophyte and B. sorokiniana decreased AM fungal colonization. Plants inoculated with B. sorokiniana showed the typical leaf spot symptoms 2 weeks after inoculation and the lowest disease incidence was with plants that were host to both C. etunicatum and E. festucae var. lolii. Plants with these two fungi had much higher activity of peroxidases (POD), superoxide dismutase (SOD) and catalase (CAT) and lower values of malondialdehyde (MDA) and hydrogen peroxide (HO). The AM fungus C. etunicatum and the grass endophyte fungus E. festucae var. lolii have the potential to promote perennial ryegrass growth and resistance to B. sorokiniana leaf spot.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-017-0813-9DOI Listing

Publication Analysis

Top Keywords

festucae var
16
var lolii
16
perennial ryegrass
16
leaf spot
12
grass endophyte
12
arbuscular mycorrhizal
8
mycorrhizal fungus
8
fungus epichloë
8
epichloë festucae
8
bipolaris sorokiniana
8

Similar Publications

Data for herbicide effects on plant flowering are needed to determine potential impacts on plant reproduction. Thus, flowering phenology was determined for up to 12 weeks after herbicide treatment for native Willamette Valley plants growing in small plots on two Oregon State University experimental farms. Six perennial species were evaluated: Camassia leichtlinii (CALE), Elymus glaucus (ELGL), Eriophyllum lanatum (ERLA), Festuca idahoensis subsp.

View Article and Find Full Text PDF

The efficient preservation of protein in silage for livestock feed is dependent on the rate and extent of proteolysis. Previous research on fresh forage indicated enhanced protein stability in certain (ryegrass fescue hybrids) cultivars compared to ryegrass. This is the first report of an experiment to test the hypothesis that a cultivar had reduced proteolysis compared to perennial ryegrass () during the ensiling process.

View Article and Find Full Text PDF

Background: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids).

View Article and Find Full Text PDF

var. and sp. TG-3 are filamentous fungal endophytes of perennial ryegrass () that have a substantial impact on New Zealand's agricultural economy by conferring biotic advantages to the host grass.

View Article and Find Full Text PDF

has been widely planted together with other perennial grasses for rebuilding degraded alpine meadow atop the Qinghai-Tibetan Plateau. However, the rebuilt sown pastures begin to decline a few years after establishing. One of the possible causes for the degradation of sown grassland may come from allelopathy of planted grasses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!