Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) shows great potential to produce valuable optically pure epoxides and β-substituted alcohols. However, this enzyme has been reported to be very sensitive and less stable under oxidative conditions. Enzyme immobilization represents a powerful means to overcome this limitation and provides the enzyme characteristics of a biocatalyst. In this study, the crude extract of HheC was directly subjected to enzyme immobilization using a carrier-free cross-linked enzyme aggregates (CLEAs) method. The results showed that under the optimized conditions, the obtained HheCCLEAs retained more than 90% activity of the free enzyme; preserved more than 50% of their original activity after storage at 4 °C for 2 months, even in the absence of a reducing agent; displayed a strong tolerance to organic solvents with fully active after incubation in the presence of 50% cyclohexane and n-hexane for 5 h; the presence of organic solvents could minimize the negative effect of enzyme immobilization on the enzntioselectivity of HheC. Most importantly, HheCCLEAs maintained more than 70% activity after 10 reusability cycles. The utility of HheCCLEAs as a valuable biocatalyst was exhibited by the kinetic resolution of azide-mediated ring-opening reaction of rac-1,2-epoxy-2-methylbutane. These results indicated that HheCCLEAs overcame some disadvantages of free enzymes to become biocatalysts. Together with further engineering of the enzyme, HheCCLEAs could become a promising biocatalyst for the synthesis of valuable chiral compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2017.12.014DOI Listing

Publication Analysis

Top Keywords

enzyme immobilization
12
cross-linked enzyme
8
enzyme aggregates
8
aggregates cleas
8
halohydrin dehalogenase
8
dehalogenase agrobacterium
8
agrobacterium radiobacter
8
radiobacter ad1
8
enzyme
8
organic solvents
8

Similar Publications

Acylase-Based Coatings on Sandblasted Polydimethylsiloxane-Based Materials for Antimicrobial Applications.

Polymers (Basel)

January 2025

Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal.

Indwelling medical devices, such as urinary catheters, often experience bacterial colonization, forming biofilms that resist antibiotics and the host's immune defenses through quorum sensing (QS), a chemical communication system. This study explores the development of antimicrobial coatings by immobilizing acylase, a quorum-quenching enzyme, on sandblasted polydimethylsiloxane (PDMS) surfaces. PDMS, commonly used in medical devices, was sandblasted to increase its surface roughness, enhancing acylase attachment.

View Article and Find Full Text PDF

Climate change and the energy crisis, driven by excessive CO emissions, have emerged as pressing global challenges. The conversion of CO into high-value chemicals not only mitigates atmospheric CO levels but also optimizes carbon resource utilization. Enzyme-catalyzed carbon technology offers a green and efficient approach to CO conversion.

View Article and Find Full Text PDF

One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection.

Int J Mol Sci

January 2025

General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.

Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!