Campylobacter jejuni and C. coli are important food-borne pathogens that are widespread in animal husbandry. To combat Campylobacter along the food chain, the application of lytic phages has been shown to be a promising tool. Campylobacter phages are currently classified into three groups, of which group II and group III phages are the most common. Members of each group are closely related, whereas the two groups share only little DNA similarity. Moreover, while group III phages are specific for C. jejuni, group II phages additionally infect C. coli. Phage cocktails intended to be used for applications should be composed of various phages that differ in their host range and growth kinetics. The isolation of phages is generally performed by plaque assays. This approach has the limitation that phages are merely identified by their lytic activity on certain indicator strains and that relatively high numbers of phages must be present in a tested sample. Therefore, a more sensitive molecular detection system would be beneficial, which allows a pre-screening of samples and the quick detection and discrimination of group II and group III phages. New phages can then be isolated by use of indicator strains that may be different from those typically applied. On the basis of available Campylobacter phage genome sequences, we developed a multiplex PCR system for group II and group III phages selecting the tail tube gene and the gene for the base plate wedge, respectively, as target. Phages of both groups could be identified with primers deduced from the putative tail fiber gene. Efficient release of phage DNA from capsids was achieved by an extended heat treatment or digestion of phage particles with proteinase K/SDS yielding a detection limit of 1 pfu/ml. Individual detection of group II phages, group III phages and of both groups was studied with artificially contaminated chicken skin. To recover phages that had strongly adhered to the skin, stomaching was the most efficient technique. The developed PCR protocol was employed to detect Campylobacter phages in food and environmental samples. In 50 out of 110 samples group II and/or group III phages were identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741259PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190240PLOS

Publication Analysis

Top Keywords

group iii
24
iii phages
24
phages
19
group
13
campylobacter phages
12
group group
12
group phages
8
phages identified
8
indicator strains
8
phages groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!