Hot pressurized liquid extraction has been used to obtain polyphenols; however, its operating conditions can generate hydroxymethylfurfural, a potential human carcinogen. The addition of ethanol can reduce process temperatures and retain extraction efficiencies, but the ethanol may reduce the recovery of polyphenols in the subsequent purification stage, affecting the antioxidant properties of the extracts. This study evaluates a combined hot pressurized liquid extraction-resin purification process to obtain polyphenol extracts from spent ground coffee reduced in hydroxymethylfurfural. A multifactorial design was developed to determine the combined effect of the extraction (ethanol content: 0-16% and temperature: 60-90 °C) and purification (ethanol: 60-80%) conditions on some chemical properties of the extracts. The highest recovery of polyphenols (~8 mg GAE/g dry coffee solids) and reduction of hydroxymethylfurfural (95%) were obtained at 90 °C and 16% of ethanol during extraction and 80% of ethanol during purification. These operating conditions retained the antioxidant capacity of the crude extract between 60% and 88% depending on the determination method and recovered 90, 98, and 100% of 4-feruloylquinic acid, epicatechin, and 5-feruloylquinic acid, respectively after purification. The combined process allows differential polyphenols' recovery and enhances the safety of the extracts. Our computational chemistry results ruled out that the overall selectivity of the integrated process was correlated with the size of the polyphenols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943929PMC
http://dx.doi.org/10.3390/molecules23010021DOI Listing

Publication Analysis

Top Keywords

hot pressurized
12
pressurized liquid
12
combined hot
8
liquid extraction-resin
8
extraction-resin purification
8
purification process
8
operating conditions
8
ethanol reduce
8
recovery polyphenols
8
properties extracts
8

Similar Publications

Enhancement of health beneficial bioactivities of bitter melon (Momordica charantia L.) by puffing.

Food Chem

January 2025

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

Effects of puffing and extraction method on physical and biological efficacy of bitter melon was investigated. Puffing increased the Maillard reaction products, extraction yield, total phenolic and total flavonoid contents. Antioxidant activity was the highest at 980 kPa, but there was no significant difference between two extraction methods.

View Article and Find Full Text PDF

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.

View Article and Find Full Text PDF

Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.

View Article and Find Full Text PDF

Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.

Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!