Transcriptional Changes in Dorsal Spinal Cord Persist after Surgical Incision Despite Preemptive Analgesia with Peripheral Resiniferatoxin.

Anesthesiology

From the Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland (S.J.R., M.R.S., D.M.L., M.J.I., A.J.M.); and the Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (S.J.R.).

Published: March 2018

Background: Peripheral nociceptors expressing the ion channel transient receptor potential cation channel, subfamily V, member 1, play an important role in mediating postoperative pain. Signaling from these nociceptors in the peri- and postoperative period can lead to plastic changes in the spinal cord and, when controlled, can yield analgesia. The transcriptomic changes in the dorsal spinal cord after surgery, and potential coupling to transient receptor potential cation channel, subfamily V, member 1-positive nociceptor signaling, remain poorly studied.

Methods: Resiniferatoxin was injected subcutaneously into rat hind paw several minutes before surgical incision to inactivate transient receptor potential cation channel, subfamily V, member 1-positive nerve terminals. The effects of resiniferatoxin on postincisional measures of pain were assessed through postoperative day 10 (n = 51). Transcriptomic changes in the dorsal spinal cord, with and without peripheral transient receptor potential cation channel, subfamily V, member 1-positive nerve terminal inactivation, were assessed by RNA sequencing (n = 22).

Results: Peripherally administered resiniferatoxin increased thermal withdrawal latency by at least twofold through postoperative day 4, increased mechanical withdrawal threshold by at least sevenfold through postoperative day 2, and decreased guarding score by 90% relative to vehicle control (P < 0.05). Surgical incision induced 70 genes in the dorsal horn, and these changes were specific to the ipsilateral dorsal horn. Gene induction with surgical incision persisted despite robust analgesia from resiniferatoxin pretreatment. Many of the genes induced were related to microglial activation, such as Cd11b and Iba1.

Conclusions: A single subcutaneous injection of resiniferatoxin before incision attenuated both evoked and nonevoked measures of postoperative pain. Surgical incision induced transcriptomic changes in the dorsal horn that persisted despite analgesia with resiniferatoxin, suggesting that postsurgical pain signals can be blocked without preventing transcription changes in the dorsal horn.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175836PMC
http://dx.doi.org/10.1097/ALN.0000000000002006DOI Listing

Publication Analysis

Top Keywords

changes dorsal
20
surgical incision
20
spinal cord
16
transient receptor
16
receptor potential
16
potential cation
16
cation channel
16
channel subfamily
16
subfamily member
16
dorsal horn
16

Similar Publications

Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

Brain Topogr

January 2025

Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, China.

Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients.

View Article and Find Full Text PDF

Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related traumatic brain injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI.

View Article and Find Full Text PDF

Genetic identification of zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) parasitizing the shortfin squid Illex argentinus under commercial exploitation in the Southwestern Atlantic Ocean.

Int J Food Microbiol

January 2025

Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

Despite the shortfin squid, Illex argentinus, is one of the most important commercial species for the Argentine fisheries, being the third frozen product exported to Europe, the occurrence and distribution of zoonotic anisakid nematodes is scarcely reported. A total of 712 I. argentinus distributed in 17 samples, corresponding to its three main commercial stocks, caught along its distribution range in Argentine waters were examined for anisakid parasites.

View Article and Find Full Text PDF

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

The posterior parietal cortex (PPC) is an associative neocortical region that integrates multiple streams of information and is implicated in spatial cognition and decision making. In some cases, however, the PPC is not required for these functions. One possibility is that the PPC is recruited when spatial complexity is high.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!