SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection.

Plant Signal Behav

a Department of Entomology and the Nematology and Chemistry Units , Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion , Israel.

Published: December 2017

AI Article Synopsis

  • The study analyzed how the tomato's WRKY defense regulator, SlWRKY45, changes during infection by the nematode Meloidogyne javanica, focusing on its expression over time and in different tissues.
  • SlWRKY45 expression significantly increased within five days of infection, particularly in feeding cells, and was strongly induced by phytohormones like cytokinin and auxin but not by jasmonates.
  • Overexpressing SlWRKY45 in tomato roots led to more nematode females, suggesting this regulator helps create conditions that support nematode development while suppressing defense-related genes.

Article Abstract

The fluctuation of tomato's WRKY defense regulators during infection by the root knot nematode Meloidogyne javanica was analyzed: and the spatial and temporal expression of SlWRKY45 was studied in depth with regard to its response to nematode infection, phytohormones, and wounding. Expression of WRKY45 increased substantially within 5 d upon infection and continued through feeding-site development and gall maturation. Histological analysis of nematode feeding sites indicated that WRKY45 was highly expressed within the feeding cells and associated vascular parenchyma cells. Responses of SlWRKY45 promoters to several phytohormones showed that WRKY45 was highly induced by specific phytohormones, including cytokinin, auxin, and the defense-signaling molecule salicylic acid (SA), but not by the jasmonates. Overexpressing tomato lines were generated, and infection tests showed that, significantly, roots over-expressing SlWRKY45 contained substantially increased number of females, indicating that WRKY45 overexpression supported faster nematode development. qRT-PCR tests have shown roots overexpressing WRKY45 suppressed the jasmonic acid and salicylic acid marker genes, proteinase inhibitor (PI), and pathogenesis related protein (PR1), respectively, and also the cytokinin response factors CRF1 and CRF6. Overall, this study indicated SlWRKY45 to be a potential transcription factor whose manipulation by the invading nematode might be critical for coordination of hormone signals supporting favorable condition for nematode development in root tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792125PMC
http://dx.doi.org/10.1080/15592324.2017.1356530DOI Listing

Publication Analysis

Top Keywords

root knot
8
knot nematode
8
wrky45 highly
8
salicylic acid
8
tests roots
8
nematode development
8
nematode
7
infection
5
wrky45
5
slwrky45 nematode-responsive
4

Similar Publications

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.

View Article and Find Full Text PDF

The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.

View Article and Find Full Text PDF

Bioactive Secondary Metabolites from Against .

Microorganisms

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.

View Article and Find Full Text PDF

This surgical video demonstrates the full-endoscopic repair of an incidental durotomy, offering practical guidance and insights into the technique. Incidental dural tears occur in up to 1% of lumbar endoscopic surgeries, with risk factors including interlaminar approaches, stenosis decompression, and power drill usage. Although many dural tears are managed with sealant or gel foam, no standard exists for when surgical repair is necessary.

View Article and Find Full Text PDF

Root-knot nematodes Meloidogyne incognita are sedentary endoparasites with a broad host range which includes economically important medicinal plant species including Turmeric. Turmeric (Curcuma longa) is an important medicinal and aromatic plant (MAPs) grown at Baruasagar town in Jhansi district where root-knot nematodes are a major threat in production fields. The invasion of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!