Statistical Mechanics-Based Theoretical Investigation of Solvation Effects on Glucose Anomer Preferences.

J Phys Chem B

Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan.

Published: January 2018

The importance of solvation effects on the stability of glucose anomers has been studied by the combination of quantum mechanics and statistical mechanics, namely, the reference interaction site model self-consistent field spatial electron density distribution. The preferences of α- and β-glucose in HO are well reproduced with the obtained ratio of 35:65 for α- and β-glucose, respectively. Indirect interactions and bulk effects, described by the Onsager model, are relatively small compared to the direct solute-solvent interactions, especially in [DMIM]Cl and dimethyl sulfoxide. From the decomposition of solvation free energy and solvation structures, it can be seen that the interactions with the solvent molecules greatly contribute to the anomer preferences.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b10270DOI Listing

Publication Analysis

Top Keywords

solvation effects
8
anomer preferences
8
α- β-glucose
8
statistical mechanics-based
4
mechanics-based theoretical
4
theoretical investigation
4
solvation
4
investigation solvation
4
effects glucose
4
glucose anomer
4

Similar Publications

Quantum Chemical NMR Spectroscopic Structural Analysis in Solution: The Investigation of 3-Indoleacetic Acid Dimer Formation in Chloroform and DMSO Solution.

Magn Reson Chem

January 2025

Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.

We present a DFT-PCM NMR study of 3-indoleacetic acid (3-IAA), used as a working example, including explicit solvent molecules, named PCM-nCHCl, PCM-nDMSO (n = 0, 2, 4, 8, 14, 20, and 25), to investigate the dimer formation in solution. Apart from well-known cyclic (I) and open (II) acetic acid (AA) dimers, two new structures were located on DFT-PCM potential energy surface (PES) for 3-IAA named quasicyclic A (III) and quasicyclic B (IV), the last one having N-H…O hydrogen bond (instead of O-H…O). In addition, four other structures having π-π type interactions named V, VI, VII, and VIII were also obtained completing the sample on the PES.

View Article and Find Full Text PDF

D-glucose-conjugated thioureas containing 2-aminopyrimidine as potential multitarget inhibitors for type 2 diabetes mellitus: Synthesis and biological activity study.

Comput Biol Med

January 2025

Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.

α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.

View Article and Find Full Text PDF

Hydrolysis Reactions of p-Nitrophenyl Trifluoroacetate and S-Ethyl Trifluorothioacetate.

Molecules

January 2025

Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL 32224, USA.

The formation of water structures can provide significant benefits in organic reactions, stabilizing charge and lowering activation energies. Hydrolysis reactions will frequently rely on water networks to accomplish these goals. Here, we used computational chemistry and experimental kinetics to investigate a model thioester molecule S-ethyl trifluorothioacetate, and extended work on a previously characterized ester p-nitrophenyl trifluoroacetate.

View Article and Find Full Text PDF

Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances.

View Article and Find Full Text PDF

Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!