In the production of useful microbial secondary metabolites, the breeding of strains is generally performed by random mutagenesis. However, because random mutagenesis introduces many mutations into genomic DNA, the causative mutations leading to increased productivity are mostly unknown. Therefore, although gene targeting is more efficient for breeding than random mutagenesis, it is difficult to apply. In this study, a wild-type strain and randomly mutagenized strains of fungal sp. No. 14919, a filamentous fungus producing the HMG-CoA reductase inhibitor polyketide FR901512, were subjected to point mutation analysis based on whole genome sequencing. Among the mutated genes found, mutation of the sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) had a positive effect on increasing FR901512 productivity. By complementing the SCAP gene in the SCAP-mutated strain, productivity was decreased to the level of the SCAP-intact strain. Conversely, when either the SCAP or SREBP gene was deleted, the productivity was significantly increased. By genomic transcriptional analysis, the expression levels of three enzymes in the ergosterol biosynthesis pathway were shown to be decreased by SCAP mutation. These findings led to the hypothesis that raw materials of polyketides, such as acetyl-CoA and malonyl-CoA, became more available for FR901512 biosynthesis due to depression in sterol biosynthesis caused by knockout of the SREBP system. This mechanism was confirmed in Aspergillus terreus producing the polyketide lovastatin, which is structurally similar to FR901512. Thus, knockout of the SREBP system should be considered significant for increasing the productivities of polyketides, such as HMG-CoA reductase inhibitors, by filamentous fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-017-8685-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!