Vaginal Lactobacilli Reduce Viability through Multiple Strategies: An Study.

Front Cell Infect Microbiol

Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy.

Published: December 2018

The emergence and spread of antimicrobial resistance in (GC) underline the need of "antibiotic-free" strategies for the control of gonorrhea. The aim of this study was to assess the anti-gonococcal activity of 14 vaginal strains, belonging to different species (), isolated from healthy pre-menopausal women. In particular, we performed "inhibition" experiments, evaluating the ability of both lactobacilli cells and culture supernatants in reducing GC viability, at two different contact times (7 and 60 min). First, we found that the acidic environment, associated to lactobacilli metabolism, is extremely effective in counteracting GC growth, in a pH- and time-dependent manner. Indeed, a complete abolishment of GC viability by lactobacilli supernatants was observed only for pH values < 4.0, even at short contact times. On the contrary, for higher pH values, no 100%-reduction of GC growth was reached at any contact time. Experiments with organic/inorganic acid solutions confirmed the strict correlation between the pH levels and the anti-gonococcal effect. In this context, the presence of lactate seemed to be crucial for the anti-gonococcal activity, especially for pH values in the range 4.4-5.3, indicating that the presence of H ions is necessary but not sufficient to kill gonococci. Moreover, experiments with buffered supernatants led to exclude a direct role in the GC killing by other bioactive molecules produced by lactobacilli. Second, we noticed that lactobacilli cells are able to reduce GC viability and to co-aggregate with gonococci. In this context, we demonstrated that released-surface components with biosurfactant properties, isolated from "highly-aggregating" lactobacilli, could affect GC viability. The antimicrobial potential of biosurfactants isolated from lactobacilli against pathogens has been largely investigated, but this is the first report about a possible use of these molecules in order to counteract GC infectivity. In conclusion, we identified specific strains, mainly belonging to species, able to counteract GC viability through multiple mechanisms. These strains could represent a new potential probiotic strategy for the prevention of GC infections in women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723648PMC
http://dx.doi.org/10.3389/fcimb.2017.00502DOI Listing

Publication Analysis

Top Keywords

reduce viability
8
viability multiple
8
anti-gonococcal activity
8
strains belonging
8
belonging species
8
lactobacilli cells
8
contact times
8
lactobacilli
7
viability
6
vaginal lactobacilli
4

Similar Publications

Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy.

Vaccines (Basel)

November 2024

Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.

The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.

View Article and Find Full Text PDF

Leishmaniasis, caused by protozoa of the genus , is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from (Syn. ), a plant rich in dimeric flavonoids called brachydins.

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

Background/objectives: Biofilm-associated infections, particularly those involving Candida auris and Staphylococcus aureus, pose significant challenges in clinical settings due to their resilience and resistance to conventional treatments. This study aimed to synthesize novel triazole derivatives containing a piperazine ring via click chemistry and evaluate their efficacy in disrupting biofilms formed by these pathogens.

Methods: Triazole derivatives were synthesized using click chemistry techniques.

View Article and Find Full Text PDF

: Clonorchiasis is a foodborne parasitic disease that can lead to severe biliary fibrosis and cholangiocarcinoma. While praziquantel (PZQ) is available for clonorchiasis treatment, it cannot revert the histopathological damage incurred through parasite-induced fibrosis. Curcumin (CUR) is an emerging experimental drug possessing anti-inflammatory and fibrosis-alleviating effects, thus signifying its potential as an anthelmintic drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!