The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO, a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737104PMC
http://dx.doi.org/10.1002/advs.201700467DOI Listing

Publication Analysis

Top Keywords

tensile strain
12
enhanced proton
8
proton conductivity
8
conductivity y-doped
8
y-doped bazro
8
strain
7
conductivity
5
bazro strain
4
strain engineering
4
engineering effects
4

Similar Publications

High Stability, Piezoelectric Response, and Promising Photocatalytic Activity on the New Pentagonal CGeP Monolayer.

ACS Phys Chem Au

January 2025

Modeling and Molecular Simulation Group, São Paulo State University (UNESP), School of Sciences, Bauru 17033-360, Brazil.

This study introduces the penta-structured semiconductor p-CGeP through density functional theory simulations, which possesses an indirect band gap transition of 3.20 eV. Mechanical analysis confirms the mechanical stability of p-CGeP, satisfying Born-Huang criteria.

View Article and Find Full Text PDF

Lattice-Strain Engineering of High-Entropy-Oxide Nanoparticles: Regulation by Flame Spray Pyrolysis with Ultrafast Quenching.

Adv Mater

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

The lattice-strain engineering of high-entropy-oxide nanoparticles (HEO-NPs) is considered an effective strategy for achieving outstanding performance in various applications. However, lattice-strain engineering independent of the composition variation still confronts significant challenges, with existing modulation techniques difficult to achieve mass production. Herein, a novel continuous-flow synthesis strategy by flame spray pyrolysis (FSP) is proposed, which air varying flow rates is introduced for fast quenching to alter the cooling rate and control the lattice strain of HEO-NPs.

View Article and Find Full Text PDF

A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.

View Article and Find Full Text PDF

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!