Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737106 | PMC |
http://dx.doi.org/10.1002/advs.201700401 | DOI Listing |
Adv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.
View Article and Find Full Text PDFBiomater Adv
January 2025
Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany.
Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Universitas Airlangga, Faculty of Dental Medicine, Department of Oral Biology, Surabaya, East Java, Indonesia.
Unlabelled: Guided bone regeneration (GBR) is an alternative treatment for craniofacial bone defects reconstruction through membrane barrier adaptation, such as demineralized dentin material membrane (DDMM). DDMM is used as a substitute for GBR material, which aligns with Green Economy principles, it has a good biological osteoinductive and osteoconductive effects, and its structure resembles bones. The balance of bone remodeling when experiencing craniofacial defects will be altered and allow changes to resorption activity, so the mechanisms of osteoclastogenesis and bone resorption are vital.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!