We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740133 | PMC |
http://dx.doi.org/10.1038/s41598-017-18364-0 | DOI Listing |
Mechanobiol Med
December 2024
C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States.
Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two "space embryo" studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation.
View Article and Find Full Text PDFRedox Biol
December 2024
Stanford University, School of Medicine, Stanford, CA, 94305, USA.
Long-duration spaceflight beyond Earth's magnetosphere poses serious health risks, including muscle atrophy, bone loss, liver and kidney damage, and the Spaceflight-Associated Neuro-ocular Syndrome (SANS). RNA-seq of mice aboard the International Space Station (ISS) for 37 days revealed extraordinary hypermutation in tissue-specific genes, with guanine base conversion predominating, potentially contributing to spaceflight-associated health risks. Our results suggest that the genome-wide accelerated mutation that we measured, seemingly independent of radiation dose, was induced by oxidative damage from higher atmospheric carbon dioxide (CO) levels and increased reactive oxygen species (ROS) on the ISS.
View Article and Find Full Text PDFSci Rep
October 2024
School of Psychology, University of Sydney, Sydney, Australia.
A group of highly experienced pilots performed full-motion, simulated T-38 landings before and after extended missions aboard the International Space Station (ISS). On the day of return from the ISS pilots' performance was degraded on the initial landing attempt, with difficulty maintaining altitude during banking turns and navigational errors, which affected touchdown parameters such as touchdown speed, height over runway threshold and touchdown distance from the runway threshold. A positive result was that all pilots successfully completed a second landing attempt on the same day, suggesting a rapid recovery of performance once exposed to the task at hand.
View Article and Find Full Text PDFSurv Ophthalmol
September 2024
Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States.
PLoS One
August 2024
Archaeology Research Center, University of Southern California, Los Angeles, CA, United States of America.
Between January and March 2022, crew aboard the International Space Station (ISS) performed the first archaeological fieldwork in space, the Sampling Quadrangle Assemblages Research Experiment (SQuARE). The experiment aimed to: (1) develop a new understanding of how humans adapt to life in an environmental context for which we are not evolutionarily adapted, using evidence from the observation of material culture; (2) identify disjunctions between planned and actual usage of facilities on a space station; (3) develop and test techniques that enable archaeological research at a distance; and (4) demonstrate the relevance of social science methods and perspectives for improving life in space. In this article, we describe our methodology, which involves a creative re-imagining of a long-standing sampling practice for the characterization of a site, the shovel test pit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!