A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large bipolaron density at organic semiconductor/electrode interfaces. | LitMetric

Large bipolaron density at organic semiconductor/electrode interfaces.

Nat Commun

Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.

Published: December 2017

Bipolaron states, in which two electrons or two holes occupy a single molecule or conjugated polymer segment, are typically considered to be negligible in organic semiconductor devices due to Coulomb repulsion between the two charges. Here we use charge modulation spectroscopy to reveal a bipolaron sheet density >10 cm at the interface between an indium tin oxide anode and the common small molecule organic semiconductor N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine. We find that the magnetocurrent response of hole-only devices correlates closely with changes in the bipolaron concentration, supporting the bipolaron model of unipolar organic magnetoresistance and suggesting that it may be more of an interface than a bulk phenomenon. These results are understood on the basis of a quantitative interface energy level alignment model, which indicates that bipolarons are generally expected to be significant near contacts in the Fermi level pinning regime and thus may be more prevalent in organic electronic devices than previously thought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740113PMC
http://dx.doi.org/10.1038/s41467-017-02459-3DOI Listing

Publication Analysis

Top Keywords

organic semiconductor
8
organic
5
large bipolaron
4
bipolaron density
4
density organic
4
organic semiconductor/electrode
4
semiconductor/electrode interfaces
4
bipolaron
4
interfaces bipolaron
4
bipolaron states
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!