Hereditary hyperferritinaemia-cataract syndrome (HHCS) is a rare disorder usually caused by heterozygous mutations in the iron-responsive element (IRE) in the 5' untranslated region (5'UTR) of the L-ferritin gene (FTL), disturbing the binding of iron regulatory proteins (IRPs) and the post-transcriptional regulation of ferritin expression. Here, the proband of a consanguineous family displayed moderate bilateral cataracts and elevated serum ferritin in the absence of iron overload. The parents and siblings showed variable degrees of mild bilateral cataracts combined with elevated levels of circulating ferritin. Sequencing of FTL identified a novel 5'UTR mutation c.-151A > G, also named "Ghent +49A > G". The zygosity of the mutation, occurring in homozygous and heterozygous state in the proband and other affected family members respectively, correlated well with severity of ophthalmological and hematological manifestations. The substitution is expected to impair the secondary structure of the upper IRE stem. Functional characterization of +49A > G by electrophoretic mobility shift assays demonstrated a reduced binding affinity for IRP1 compared to the wild-type IRE of FTL. Overall, we have expanded the repertoire of deleterious biallelic FTL IRE mutations in HHCS with this novel +49A > G mutation, the zygosity of which correlated well with the disease expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740175 | PMC |
http://dx.doi.org/10.1038/s41598-017-18326-6 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFLab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.
Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).
Curr Drug Discov Technol
December 2024
Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, 603203, India.
Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.
View Article and Find Full Text PDFImpact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur. This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!