Celiac disease (CD) patients mount an abnormal immune response to gluten. T-cell receptor (TCR) repertoires directed to some immunodominant gluten peptides have previously been described, but the global immune response to in vivo gluten exposure in CD has not been systematically investigated yet. Here, we characterized signatures associated with gluten directed immune activity and identified gluten-induced T-cell clonotypes from total blood and gut TCR repertoires in an unbiased manner using immunosequencing. CD patient total TCR repertoires showed increased overlap and substantially altered TRBV-gene usage in both blood and gut samples, and increased diversity in the gut during gluten exposure. Using differential abundance analysis, we identified gluten-induced clonotypes in each patient that were composed of a large private and an important public component. Hierarchical clustering of public clonotypes associated with dietary gluten exposure identified subsets of highly similar clonotypes, the most proliferative of which showing significant enrichment for the motif ASS[LF]R[SW][TD][DT][TE][QA][YF] in PBMC repertoires. These results show that CD-associated clonotypes can be identified and that common gluten associated immune response features can be characterized in vivo from total repertoires, with potential use in disease stratification and monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740085 | PMC |
http://dx.doi.org/10.1038/s41598-017-18137-9 | DOI Listing |
Vet Res Commun
January 2025
Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory signalling, contributing to GI cancer initiation and progression. infection and genotoxins released from dysbiosis, lifestyle and dietary habits are other factors that contribute to GI cancer development.
View Article and Find Full Text PDFNutrients
December 2024
Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Cordoba, Spain.
Background/objectives: Gut microbiota interacts with nutrients, which may be relevant to assigning a microbial signature to colorectal cancer (CRC). We aim to evaluate the potential of gut microbiota combined with dietary habits in the early detection of pathological findings related to CRC in the course of a screening program.
Methodology: The colonoscopy performed on 152 subjects positive for fecal occult blood test showed that 6 subjects had adenocarcinoma, 123 had polyps, and 23 subjects had no pathological findings.
Nutrients
December 2024
Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland.
Background/objectives: Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations.
Methods: The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!