A New Barley Stripe Mosaic Virus Allows Large Protein Overexpression for Rapid Function Analysis.

Plant Physiol

Département des Sciences Biologiques, Centre TOXEN, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada

Published: March 2018

Understanding the genetic and molecular bases of gene function is of increasing importance to harness their potential to produce plants with novel traits. One important objective is the improvement of plant productivity to meet future demands in food crop production. Gene function is mostly characterized through overexpression or silencing in transgenic plants. This approach is a lengthy procedure, especially in cereals. Plant viral expression systems can be used for rapid expression of proteins. However, current systems have a small cargo capacity and have mostly been used for gene silencing. Here, a four-component barley stripe mosaic virus-based system with high cargo capacity was constructed for the rapid and stable expression of recombinant proteins in different plant species, allowing function analyses at different stages of development. Fluorescent marker proteins are expressed at high levels within 1 week, and a proof of efficient function analysis is shown using the aluminum malate transporter1 gene. In addition to the ability of gene cotransformation, this work demonstrates that the four-component barley stripe mosaic virus-based system allows the overexpression of cDNAs of up to 2,100 nucleotides (encoding a protein of ∼78 kD), thereby providing an invaluable tool to accelerate functional genomics and proteomic research in monocot and dicot species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841696PMC
http://dx.doi.org/10.1104/pp.17.01412DOI Listing

Publication Analysis

Top Keywords

barley stripe
12
stripe mosaic
12
function analysis
8
gene function
8
cargo capacity
8
four-component barley
8
mosaic virus-based
8
virus-based system
8
function
5
gene
5

Similar Publications

Intein-mediated split Cas9 for genome editing in plants.

Front Genome Ed

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia, China.

Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the transcript into two segments (Split-v1) and three segments (Split-v3).

View Article and Find Full Text PDF

Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance.

View Article and Find Full Text PDF

The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.

View Article and Find Full Text PDF

The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.

View Article and Find Full Text PDF

The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!