Vascular Semaphorin 7A Upregulation by Disturbed Flow Promotes Atherosclerosis Through Endothelial β1 Integrin.

Arterioscler Thromb Vasc Biol

From the Cyrus Tang Hematology Center (S.H., Y.L., T.Y., L.X., Y.W., F.L., F.Y., Y.C., Q.W., C.T., L.Z.), Department of Epidemiology, School of Public Health (X.Z., A.W., Y.Z.), Collaborative Innovation Center of Hematology of Jiangsu Province (S.H., Y.L., T.Y., Q.W., C.T., L.Z.), and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (X.Z., A.W., Q.W., Y.Z.), Soochow University, Suzhou, China; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (J.H., H.J.); Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, the Netherlands (H.Z., J.M.v.G., A.J.v.Z.); and Department of Molecular Cardiology, Cleveland Clinic, OH (Q.W.).

Published: February 2018

Objective: Accumulating evidence suggests a role of semaphorins in vascular homeostasis. Here, we investigate the role of Sema7A (semaphorin 7A) in atherosclerosis and its underlying mechanism.

Approach And Results: Using genetically engineered mice, we showed that deletion of Sema7A attenuates atherosclerotic plaque formation primarily in the aorta of mice on a high-fat diet. A higher level of Sema7A in the atheroprone lesser curvature suggests a correlation of Sema7A with disturbed flow. This notion is supported by elevated Sema7A expression in human umbilical venous endothelial cells either subjected to oscillatory shear stress or treated with the PKA (protein kinase A)/CREB (cAMP response element-binding protein) inhibitor H89 (-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide·2HCl hydrate). Further studies using the partial carotid artery ligation model showed that disturbed flow in the left carotid artery of mice promoted the expression of endothelial Sema7A and cell adhesion molecules, leukocyte adhesion, and plaque formation, whereas such changes were attenuated in mice. Further studies showed that blockage of β1 integrin, a known Sema7A receptor, or inhibition of FAK (focal adhesion kinase), MEK1/2 (mitogen-activated protein kinase kinase 1/2), or NF-κB (nuclear factor-κB) significantly reduced the expression of cell adhesion molecules and THP-1 (human acute monocytic leukemia cell line) monocyte adhesion in Sema7A-overexpressing human umbilical venous endothelial cells. Studies using chimeric mice suggest that vascular, most likely endothelial, Sema7A plays a major role in atherogenesis.

Conclusions: Our findings indicate a significant role of Sema7A in atherosclerosis by mediating endothelial dysfunction in a β1 integrin-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785426PMC
http://dx.doi.org/10.1161/ATVBAHA.117.310491DOI Listing

Publication Analysis

Top Keywords

disturbed flow
12
sema7a
9
β1 integrin
8
role sema7a
8
plaque formation
8
human umbilical
8
umbilical venous
8
venous endothelial
8
endothelial cells
8
protein kinase
8

Similar Publications

The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.

View Article and Find Full Text PDF

Endothelial cells under disturbed flow release extracellular vesicles to promote inflammatory polarization of macrophages and accelerate atherosclerosis.

BMC Biol

January 2025

Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.

Background: Extracellular vesicles (EVs) derived from endothelial cells (ECs) are increasingly recognized for their role in the initiation and progression of atherosclerosis. ECs experience varying degrees and types of blood flow depending on their specific arterial locations. In regions of disturbed flow, which are predominant sites for atherosclerotic plaque formation, the impact of disturbed flow on the secretion and function of ECs-derived EVs remains unclear.

View Article and Find Full Text PDF

The design of the flow field structure for bipolar plates significantly influences the output performance of proton exchange membrane fuel cells (PEMFCs). Adding baffles in the flow channels can enhance the transportation of reactants and electrochemical performance of the PEMFCs. In this study, three types of baffles with different shapes and sizes were designed.

View Article and Find Full Text PDF

Individualized autoregulation-guided arterial blood pressure management in neurocritical care.

Neurotherapeutics

January 2025

Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, USA. Electronic address:

Cerebral autoregulation (CA) is the physiological process by which cerebral blood flow is maintained during fluctuations in arterial blood pressure (ABP). There are various validated methods to measure CA, either invasively, with intracranial pressure or brain tissue oxygenation monitors, or noninvasively, with transcranial Doppler ultrasound or near-infrared spectroscopy. Utilizing these monitors, researchers have been able to discern CA patterns in several pathological states, such as but not limited to acute ischemic stroke, spontaneous intracranial hemorrhage, aneurysmal subarachnoid hemorrhage, sepsis, and post-cardiac arrest, and they have found CA to be altered in these patients.

View Article and Find Full Text PDF

Investigating Cell-Induced Mixing Dynamics in Microfluidic Droplets Using the Lattice Boltzmann Method.

Langmuir

January 2025

CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.

This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!