Zika virus (ZIKV) poses a serious public health threat due to its association with birth defects in developing fetuses and Guillain-Barré Syndrome in adults. We are developing a ZIKV vaccine based on virus-like particles (VLPs) generated in transiently transfected HEK293 cells. The genetic construct consists of the prM and envelope structural protein genes of ZIKV placed downstream from a heterologous signal sequence. To better understand the humoral responses and correlates of protection (CoP) induced by the VLP vaccine, we evaluated VLP immunogenicity with and without alum in immune-competent mice (C57Bl/6 x Balb/c) and observed efficient induction of neutralizing antibody as well as a dose-sparing effect of alum. To assess the efficacy of the immune sera, we performed passive transfer experiments in AG129 mice. Mice that received the immune sera prior to ZIKV infection demonstrated significantly reduced viral replication as measured by viral RNA levels in the blood and remained healthy, whereas control mice succumbed to infection. The results underscore the protective effect of the antibody responses elicited by this ZIKV VLP vaccine candidate. These studies will help define optimal vaccine formulations, contribute to translational efforts in developing a vaccine for clinical development, and assist in the definition of immunologic CoP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828544 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2017.12.010 | DOI Listing |
Viral Immunol
January 2025
Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico.
Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of New Mexico, Albuquerque, NM, USA
Background: Hyperphosphorylation and aggregation of neuronal tau protein is a primary pathological hallmark of Alzheimer’s disease (AD) and primary tauopathies. The accumulation of aggregated tau as neurofibrillary tangles (NFTs) is closely correlated with neurodegeneration and cognitive decline. Key phosphorylation sites on tau have been established as early biomarkers for disease detection and prediction, with various phosphorylation sites differentially appearing across diseases and disease stages.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
AC Immune SA, Lausanne, Switzerland
Background: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer’s disease. ACI‐24.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
ProMIS Neurosciences, Toronto, ON, Canada
Background: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer’s disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO‐restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer‐enriched low molecular weight (LMW) fraction of soluble AD brain extracts.
View Article and Find Full Text PDFFront Microbiol
December 2024
Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina.
Introduction: The development of a hepatitis E virus (HEV) vaccine is critical, with ORF2 capsid protein as the main target. We previously demonstrated that oral coadministration of recombinant ORF2 with immunomodulatory bacterium-like-particles (IBLP) induces a specific immune response in mice, particularly using IBLP derived from IBL027 (IBLP027), which was effective in eliciting a local humoral response. IBLP are non-live bacteria with adjuvant and carrier properties, serving as a platform for exposing proteins or antigens fused to LysM (lysine motif) domains, protein modules that bind to cell wall polysaccharides like peptidoglycan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!