Antioxidants: Friend or foe?

Asian Pac J Trop Med

Private Dental Practitioner, Sai Raghav Dental Clinic, Chennai, India.

Published: December 2017

Reactive oxygen species are the intermediates that are formed during the normal metabolic process which are effectively neutralized by the antioxidant system of the body. Any imbalance in this neutralization process causes oxidative stress which has been implicated as one of the cause in diseases such as Alzheimer's disease, cardiovascular disorders, cancer etc. Research has enabled the use of antioxidants as therapeutic agents in the treatment of various diseases. Literature also puts forth the negative effects of using antioxidants in the treatment of diseases. This review is a compilation of both the beneficial and detrimental effects of use of antioxidants in the treatment of diseases such as cancer, cardiovascular diseases, diabetes and oral diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apjtm.2017.10.017DOI Listing

Publication Analysis

Top Keywords

treatment diseases
12
effects antioxidants
8
antioxidants treatment
8
diseases
6
antioxidants
4
antioxidants friend
4
friend foe?
4
foe? reactive
4
reactive oxygen
4
oxygen species
4

Similar Publications

The Kidney Health Score: A Practical Guide to Early Detection of Kidney Disease Risk for Optimal Kidney Health.

Nephrol Nurs J

January 2025

Professor of Medicine, Department of Internal Medicine, Division of Nephrology, School of Medicine, Virginia Commonwealth University.

Chronic kidney disease (CKD) affects 10% of the global population, with increasing prevalence driven by diabetes, hypertension, and aging populations. CKD often progresses asymptomatically, frequently undetected until advanced stages, and may require costly treatments, such as dialysis or transplantation. CKD imposes a substantial financial burden on health care systems, with management costs rising sharply as the disease progresses, underscoring the need for early, cost-effective interventions.

View Article and Find Full Text PDF

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

Framework Nucleic Acid-Based and Neutrophil-Based Nanoplatform Loading Baicalin with Targeted Drug Delivery for Anti-Inflammation Treatment.

ACS Nano

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.

View Article and Find Full Text PDF

Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts.

View Article and Find Full Text PDF

Objective: Tuberous sclerosis complex (TSC) is a monogenetic disorder associated with sustained mechanistic target of rapamycin (mTOR) activation, leading to heterogeneous clinical manifestations. Epilepsy and renal angiomyolipoma are the most important causes of morbidity in adult people with TSC (pwTSC). mTOR is a key player in inflammation, which in turn could influence TSC-related clinical manifestations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!