Background: Monitoring treatment and early detection of fatal breast cancer (BC) remains a major unmet need. Aberrant circulating DNA methylation (DNAme) patterns are likely to provide a highly specific cancer signal. We hypothesized that cell-free DNAme markers could indicate disseminated breast cancer, even in the presence of substantial quantities of background DNA.

Methods: We used reduced representation bisulfite sequencing (RRBS) of 31 tissues and established serum assays based on ultra-high coverage bisulfite sequencing in two independent prospective serum sets (n = 110). The clinical use of one specific region, EFC#93, was validated in 419 patients (in both pre- and post-adjuvant chemotherapy samples) from SUCCESS (Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant treatment, as well as Extended Bisphosphonate and Surveillance-Trial) and 925 women (pre-diagnosis) from the UKCTOCS (UK Collaborative Trial of Ovarian Cancer Screening) population cohort, with overall survival and occurrence of incident breast cancer (which will or will not lead to death), respectively, as primary endpoints.

Results: A total of 18 BC specific DNAme patterns were discovered in tissue, of which the top six were further tested in serum. The best candidate, EFC#93, was validated for clinical use. EFC#93 was an independent poor prognostic marker in pre-chemotherapy samples (hazard ratio [HR] for death = 7.689) and superior to circulating tumor cells (CTCs) (HR for death = 5.681). More than 70% of patients with both CTCs and EFC#93 serum DNAme positivity in their pre-chemotherapy samples relapsed within five years. EFC#93-positive disseminated disease in post-chemotherapy samples seems to respond to anti-hormonal treatment. The presence of EFC#93 serum DNAme identified 42.9% and 25% of women who were diagnosed with a fatal BC within 3-6 and 6-12 months of sample donation, respectively, with a specificity of 88%. The sensitivity with respect to detecting fatal BC was ~ 4-fold higher compared to non-fatal BC.

Conclusions: Detection of EFC#93 serum DNAme patterns offers a new tool for early diagnosis and management of disseminated breast cancers. Clinical trials are required to assess whether EFC#93-positive women in the absence of radiological detectable breast cancers will benefit from anti-hormonal treatment before the breast lesions become clinically apparent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740791PMC
http://dx.doi.org/10.1186/s13073-017-0499-9DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
disseminated breast
12
dname patterns
12
efc#93 serum
12
serum dname
12
bisulfite sequencing
8
efc#93 validated
8
pre-chemotherapy samples
8
anti-hormonal treatment
8
breast cancers
8

Similar Publications

Evaluating Body Image Disturbance and Its Influencing Factors in Breast Cancer Patients Following Unilateral Mastectomy.

Psychiatry Clin Psychopharmacol

December 2024

Department of Operating Room, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China.

Background: Patients with unilateral breast loss after single mastectomy for breast cancer may have body image disorders such as surgical lymphedema, flap ischemia, and spinal deformity, resulting in negative emotions such as depression, inferiority, and social dysfunction. This study mainly investigated and analyzed the status quo and influencing factors of body image disorder in breast cancer patients after single mastectomy.

Methods: This study is a cross-sectional study.

View Article and Find Full Text PDF

Optimized Synthetic Correlated Diffusion Imaging for Improving Breast Cancer Tumor Delineation.

Sensors (Basel)

December 2024

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumor identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumor characteristics and disease. Recently, a new imaging modality named synthetic correlated diffusion imaging (CDI) has been showing promise for enhanced prostate cancer delineation when compared to existing MRI imaging modalities.

View Article and Find Full Text PDF

MR Elastography Using the Gravitational Transducer.

Sensors (Basel)

December 2024

Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK.

MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity.

View Article and Find Full Text PDF

: Triple-negative breast cancer (TNBC) is the most challenging molecular subtype of breast cancer (BC) in clinical practice, associated with a worse prognosis due to limited treatment strategies and its insensitivity to conventional drugs. Zinc is an important trace element for homeostasis, and its Schiff base metal complexes have shown promise in treating advanced tumors. In this study, four new heteroleptic Zn(II) complexes (-) with Schiff bases were synthesized, characterized, and evaluated for their activity in BC cells.

View Article and Find Full Text PDF

New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!