AI Article Synopsis

  • Recent studies identified two promising compounds (2-furoyl-benzoxazoles) as potential antagonists for A adenosine receptors but originally showed micromolar binding affinity.
  • Modifications at the C5 and C7 positions of these compounds were conducted based on docking studies, significantly improving their binding affinity to the receptor to the nanomolar range.
  • The optimized compounds also displayed favorable drug metabolism and pharmacokinetic properties, such as high solubility and low toxicity, highlighting the benzoxazole structure as a valuable template for developing new antagonists.

Article Abstract

We have recently reported a series of 2-furoyl-benzoxazoles as potential A adenosine receptor (AR) antagonists. Two hits were identified with interesting pharmacokinetic properties but were find to bind the hAR receptor in the micromolar-range. Herein, in order to enhance affinity toward the hAR, we explored the C5- and C7-position of hits 1 and 2 based on docking studies. These modifications led to compounds with nanomolar-range affinity (e.g. 6a, Ki = 40 nM) and high antagonist activity (e.g. 6a, IC = 70.6 nM). Selected compounds also exhibited interesting in vitro DMPK (Drug Metabolism and Pharmacokinetics) properties including high solubility and low cytotoxicity. Therefore, the benzoxazole ring appears as a highly effective scaffold for the design of new A antagonists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2017.12.007DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
8
enhance affinity
8
antagonists adenosine
4
receptor based
4
based 2-arylbenzoxazole
4
2-arylbenzoxazole scaffold
4
scaffold investigation
4
investigation c5-
4
c5- c7-positions
4
c7-positions enhance
4

Similar Publications

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

Background: Acupuncture is an effective treatment for knee osteoarthritis (KOA), reducing pain and improving function. While melatonin (MLT) has notable pain relief benefits, the analgesic mechanism of acupuncture in KOA and its relationship with melatonin are still unknown. This study aims to explore this mechanism.

View Article and Find Full Text PDF

generation of dual-target compounds using artificial intelligence.

iScience

January 2025

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.

Drugs that interact with multiple therapeutic targets are potential high-value products in polypharmacology-based drug discovery, but the rational design remains a formidable challenge. Here, we present artificial intelligence (AI)-based methods to design the chemical structures of compounds that interact with multiple therapeutic target proteins. The molecular structure generation is performed by a fragment-based approach using a genetic algorithm with chemical substructures and a deep learning approach using reinforcement learning with stochastic policy gradients in the framework of generative adversarial networks.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!