The production of aromatic volatiles such as esters during the ripening process in climacteric fruits is known to be controlled by ethylene. However, we here show that abscisic acid (ABA) application accelerated the onset of short-chain ester production (hexyl propionate, ethyl-2-methyl butyrate) and the expression of biosynthesis genes (MdAAT2 and MdBCAT1) during ripening of 'Orin' apple. ABA application also promoted the production of ethylene, and caused ethylene peak shifts correlated with the expression of ethylene synthesis genes (MdACS1/3 and MdACO1), suggesting that ABA may act jointly with ethylene as a positive regulator at the ripening stage of 'Orin' apple. Additionally, endogenous levels and expression of biosynthesis (MdNCED1) and signal transduction genes (MdABF2-like) of ABA increased towards ripening. Finally, the localization of the putative MdABF2-like protein binding element, AREB/ABF, was observed in the 5'-upstream region of MdACS1/3 and MdACO1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2017.12.007 | DOI Listing |
Physiol Plant
January 2025
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, València, Spain.
Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.
View Article and Find Full Text PDFDev Cell
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in , but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!