Understanding the mechanisms of nitrogen (N) retention and loss from fertilized urban turfgrass is critical to develop practices that mitigate N transport and protect water quality in urban ecosystems. We investigated the fate of N in lysimeters sodded with St. Augustine turfgrass and amended with labeled N from either ammonium sulfate or urea. Fourier transform ion cyclotron resonance mass spectroscopy (FTICR-MS) was employed to identify various biomolecular classes in the leached dissolved organic N (DON) from one lysimeter for each treatment and the control. Mean DON concentrations, over 92 days, were 88, 94, and 94% of total N in the leachate from the control, urea, and ammonium sulfate treatments, respectively. Isotopic analysis showed that <3% of N in the leachate originated from newly applied N fertilizer, suggesting that the remainder of the N in the leachate was derived from the lysimeter soil or sod biomass pools. The N fertilizer recovery was greatest in soil (44-48%), followed by sod+thatch (18-33%), grass clippings (10-13%), and leachate (<3%). Despite isotopic evidence of little contribution of N from fertilizers in the leachate, a fraction of ammonium sulfate fertilizer was recovered as DON in the leachate, likely after uptake and conversion of inorganic fertilizer to organic plant exudates and/or microbial byproducts. FTICR-MS identified N-bearing organic molecular formulas in the leachate from urea and ammonium sulfate treatments, providing evidence of N leaching from newly established turfgrass of DON compounds in a range of biomolecular compositions such as lipid-, protein-, carbohydrate-, and lignin-like molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.11.040DOI Listing

Publication Analysis

Top Keywords

dissolved organic
8
ammonium sulfate
8
characterization dissolved
4
organic nitrogen
4
nitrogen leachate
4
leachate newly
4
newly established
4
established fertilized
4
fertilized turfgrass
4
turfgrass understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!