A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of Curvature-Radius-Dependent Interfacial pH/Polarity for Amphiphilic Self-Assemblies: Positive versus Negative Curvature. | LitMetric

It is possible that a defined curvature at the membrane interface controls its pH/polarity to exhibit specific bioactivity. By utilizing an interface-interacting spiro-rhodamine pH probe and the Schiff base polarity probe, we have shown that the pH deviation from the bulk phase to the interface (ΔpH)/interfacial dielectric constant (κ(i)) for amphiphilic self-assemblies can be regulated by the curvature geometry (positive/negative) and its radius. According to H NMR and fluorescence anisotropy investigations, the probes selectively interact with an anionic interfacial Stern layer. The ΔpH/κ(i) values for the Stern layer are estimated by UV-vis absorption and fluorescence studies. For the anionic sodium bis-2-ethylhexyl-sulfosuccinate (AOT) inverted micellar (IM) negative interface, the highly restricted water and proton penetration into the Stern layer owing to tight surfactant packing or a reduced water-exposed headgroup area may be responsible for the much lower ΔpH ≈ -0.45 and κ(i) ≈ 28 in comparison to ∼-2.35 and ∼44, respectively, for the anionic sodium dodecyl sulfate (SDS) micellar positive interface with a close similar Stern layer. With increasing AOT IM water-pool radius (1.7-9.5 nm) or [water]/[AOT] ratio ( w) (8.0-43.0), the ΔpH and κ(i) increase maximally up to ∼-1.22 and ∼45, respectively, due to a greater water-exposed headgroup area. However, the unchanged ΔpH ≈ -0.65 and κ(i) ≈ 53.0 within radii ∼3.5-8.0 nm for the positive interface of a mixed Triton X-100 (TX-100)/SDS (4:1) micelle justify its packing flexibility. Interestingly, the continuously increasing ΔpH trend for IM up to its largest possible water-pool radius of ∼9.5 nm may rationalize the increase in ΔpH (∼-1.4 to -1.6) with the change in the curvature radii (∼15 to 50 nm) for sodium 1,2-dimyristoyl- sn-glycero-3-phosphorylglycerol (DMPG)/1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) (2:1) large unilamellar vesicles (LUV) owing to its negative interface. Whereas, similar to the micellar positive interface, the unchanged ΔpH at the positive LUV interface was confirmed by fluorescence microscopic studies with giant unilamellar vesicles of identical lipids composition. The present study offers a unique and simple method of monitoring the curvature-radius-dependent interfacial pH/polarity for biologically related membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b03888DOI Listing

Publication Analysis

Top Keywords

stern layer
16
positive interface
12
curvature-radius-dependent interfacial
8
interfacial ph/polarity
8
amphiphilic self-assemblies
8
interface
8
anionic sodium
8
negative interface
8
water-exposed headgroup
8
headgroup area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!