Torsional restraints on DNA change in time and space during the life of the cell and are an integral part of processes such as gene expression, DNA repair and packaging. The mechanical behavior of DNA under torsional stress has been studied on a mesoscopic scale, but little is known concerning its response at the level of individual base pairs and the effects of base pair composition. To answer this question, we have developed a geometrical restraint that can accurately control the total twist of a DNA segment during all-atom molecular dynamics simulations. By applying this restraint to four different DNA oligomers, we are able to show that DNA responds to both under- and overtwisting in a very heterogeneous manner. Certain base pair steps, in specific sequence environments, are able to absorb most of the torsional stress, leaving other steps close to their relaxed conformation. This heterogeneity also affects the local torsional modulus of DNA. These findings suggest that modifying torsional stress on DNA could act as a modulator for protein binding via the heterogeneous changes in local DNA structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829783 | PMC |
http://dx.doi.org/10.1093/nar/gkx1270 | DOI Listing |
Sci Rep
January 2025
Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China.
Anterior cervical interbody fusion (ACDF) has become a classic surgical procedure for the treatment of cervical degenerative diseases, and various interbody cages are widely used in this procedure. We used 3D printing technology to produce a new type of plate-locking cage, anticipating to achieve high fusion rate with the high biomechanical stability. This study is to compare the biomechanical characteristics between a newly designed interbody cage and a conventional Zero-profile cage during ACDF using finite element analysis.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.
Finite element analysis has become indispensable for biomechanical research on clavicle fractures. This review summarized evidence regarding configurations and applications of finite element analysis in clavicle fracture fixation. Seventeen articles involving 22 clavicles were synthesized from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science databases.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Institute of Nanostructure Technologies and Analytics (INA), Technological Electronics Department and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!