High consumption of sucrose induces DNA damage in male Wistar rats.

An Acad Bras Cienc

Programa de Pós-Graduação em Promoção da Saúde, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 4206, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.

Published: April 2018

The purpose of this study was to determine the effects of the high consumption of sucrose on the levels of DNA damage in blood, hippocampus and bone marrow of rats. Male Wistar rats were treated for 4 months with sucrose (10% for 60 initial days and 34% for the following 60 days) in drinking water, and then, glycemia and glycated hemoglobin (A1C) were measured. Levels of DNA damage in blood and hippocampus were evaluated by the comet assay. The micronucleus test was used to evaluate chromosomal damages in the bone marrow. The sucrose treatment significantly increased (p<0.01) the serum glucose levels (~20%) and A1C (~60%). The level of primary DNA damage was significantly increased (p<0.05) in hippocampal cells (~60%) but not in peripheral blood leukocytes (p>0.05). Additionally, it was observed a significative increase (p<0.05) in the markers of chromosomal breaks/losses in bone marrow, as indicated by the micronucleus test. This is the first study that evaluated DNA damage induced by high sucrose concentration in the hippocampus and bone marrow of rats. Sucrose-induced DNA damage was observed in both tissues. However, the mechanism of sucrose toxicity on DNA remains unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765201720160659DOI Listing

Publication Analysis

Top Keywords

dna damage
12
high consumption
8
consumption sucrose
8
male wistar
8
wistar rats
8
levels dna
8
damage blood
8
blood hippocampus
8
bone marrow
8
sucrose
4

Similar Publications

ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.

View Article and Find Full Text PDF

The Role of SWI/SNF Complex in Bladder Cancer.

J Cell Mol Med

January 2025

Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

Bladder cancer originates from bladder tissues and is the ninth most common type of cancer worldwide. The SWI/SNF (SWItch/sucrose non- fermentable) complex plays a crucial role in regulating various biological processes, such as cell cycle control, DNA damage repair and transcription regulation. The purpose of this article is to examine the functional studies of the SWI/SNF complex in bladder cancer, highlighting new pathways for creating personalised treatment approaches for bladder cancer patients with mutations in the SWI/SNF complex.

View Article and Find Full Text PDF

Investigating the origins of the mutational signatures in cancer.

Nucleic Acids Res

January 2025

Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.

Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.

View Article and Find Full Text PDF

Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.

View Article and Find Full Text PDF

Observational studies have shown that cadmium exposure increases the risk of cardiovascular disease, but the underlying mechanism is still unclear. Atherosclerotic plaque can cause vascular obstruction, which is important for the death from cardiovascular disease. Cell damage and monocyte adhesion are two early events in atherosclerotic plaque formation that can be induced by cadmium exposure, but the mechanism remains to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!