Objective: Bkv-miR-B1-5p, one of the microRNAs encoded by BK virus, was recently reported to be elevated in the blood among the patients with BK virus nephropathy (BKVN). Urinary exosome was suggested to be a possible source of biomarker for kidney diseases, but it was unknown whether it could contain viral microRNA as well as human microRNAs. The aim of this study was to evaluate whether urinary exosomal BK viral microRNA were expressed during replication and could be used to diagnose BKVN in kidney transplant recipients.

Materials And Methods: In a cross-sectional multicenter study, we collected and analyzed 458 graft biopsies from 385 kidney transplant recipients. Urine samples were collected at the time of graft biopsy, and microRNAs in urinary exosome were measured once. For 13 patients with BKVN and 67 age, sex-matched kidney transplant recipients, we measured BK viral microRNA B1-5p, 3p and human microRNA-16 in urinary exosomal fraction and compared the diagnostic value with BK viral load in plasma and urine.

Results: Pathology proven BKVN was diagnosed in 13 patients (2.8%). High levels of bkv-miR-B1-5p and bkv-miR-B1-3p were shown in all patients with BKVN. Meanwhile, plasma BK viral load assay (cut-off value of ≥ 4.0 log10 copies/mL) showed false negative in 3 cases and urinary BK viral load assay (cut-off value of ≥ 7.0 log10 copies/mL) showed false negative in 1 case among these 13 patients. The receiver operator characteristics curve analysis for bkv-miR-B1-5p and bkv-miR-B1-5p/miR-16 showed excellent discriminative power for the diagnosis of BKVN, with area under the curve values of 0.989 and 0.985, respectively.

Conclusions: This study suggests that urinary exosomal bkv-miR-B1-5p and bkv-miR-B1-5p/miR-16 could be surrogate markers for the diagnosis of BKVN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739476PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190068PLOS

Publication Analysis

Top Keywords

urinary exosomal
16
viral microrna
16
kidney transplant
16
transplant recipients
12
viral load
12
exosomal viral
8
virus nephropathy
8
urinary exosome
8
patients bkvn
8
load assay
8

Similar Publications

Technical considerations and review of urinary microRNAs as biomarkers for chronic kidney disease in dogs and cats.

Vet Clin Pathol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that play a crucial role in gene regulation, making them potential biomarkers for various diseases. In the field of veterinary medicine, there is a growing interest in exploring the diagnostic and therapeutic potential of miRNAs in kidney diseases affecting dogs and cats. This review focuses on the use of urinary miRNAs as biomarkers for chronic kidney disease (CKD) in these companion animals.

View Article and Find Full Text PDF

Introduction: Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo.

Hypothesis: We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial.

View Article and Find Full Text PDF

Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers.

Biomolecules

January 2025

BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs).

View Article and Find Full Text PDF

Urinary tract injuries represent a significant clinical challenge, necessitating precise diagnosis and effective treatment strategies. Rat models are preferred for studying urinary tract injuries due to their size, visibility of external genitalia, and robust reproductive and growth capabilities. However, there is a lack of standardized methodologies for evaluating the endpoints of rat urinary tract injury models.

View Article and Find Full Text PDF

Efficient extraction via titanium organic frameworks facilitates in-depth profiling of urinary exosome metabolite fingerprints.

Anal Bioanal Chem

January 2025

Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Urinary exosome metabolite analysis has demonstrated notable advantages in uncovering disease status, yet its potential in decoding the intricacies of clear cell renal cell carcinoma (ccRCC) remains untapped. To address this, a core-shell magnetic titanium organic framework was designed to capture urinary exosomes and assist laser desorption/ionization mass spectrometry (LDI MS) to decipher the exosomal metabolic profile of ccRCC, with high sensitivity, throughput, and speed. A total of 492 urinary exosome metabolite fingerprints (UEMFs) from 176 samples were extracted for exploring the differences between ccRCC and healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!