Pathological response of breast cancer to neoadjuvant chemotherapy (NAC) presents great variability, and new prognostic biomarkers are needed. Our aim was to evaluate the association of the epidermal growth factor receptor gene (EGFR) polymorphism R497K (rs2227983) with prognostic features and clinical outcomes of breast cancer, including the pathological response to NAC and the recurrence-free survival (RFS). Tumoral complete response (tCR) was defined by no remaining invasive cancer in the excised breast, whereas pathological complete response (pCR) was defined by no remaining invasive cancer both in the excised breast and lymph nodes. Two independent cohorts were analyzed: one from Brazil (INCA, n = 288) and one from The Netherlands (NKI-AVL, n = 255). In the INCA cohort, the variant (Lys-containing) genotypes were significantly associated with lower proportion of tCR (ORadj = 0.92; 95%CI = 0.85-0.99), whereas in the NKI-AVL cohort they were associated with tumor grade 3 (p = 0.035) and with triple-negative subtype (p = 0.032), but not with clinical outcomes. Such distinct prognostic associations may have arisen due to different neoadjuvant protocols (p < 0.001), or to lower age at diagnosis (p < 0.001) and higher proportion of tumor grade 3 (p = 0.018) at the NKI-AVL cohort. Moreover, NKI-AVL patients achieved better proportion of pCR (21.2% vs 8.3%, p < 0.001) and better RFS (HRadj = 0.48; 95% adjCI = 0.26-0.86) than patients from INCA. In conclusion, large scale studies comprehending different populations are needed to evaluate the impact of genome variants on breast cancer outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739423PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189750PLOS

Publication Analysis

Top Keywords

breast cancer
16
egfr polymorphism
8
polymorphism r497k
8
pathological response
8
clinical outcomes
8
complete response
8
defined remaining
8
remaining invasive
8
invasive cancer
8
cancer excised
8

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!