Background: Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand.

Methods: We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature.

Results: We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to NO2 was 7.8% for respiratory mortality in Thailand.

Conclusion: Mortality due to ambient air pollution in Thailand varies across the country. Geographical distribution estimates can identify high exposure areas for planners and policy-makers. Our results suggest that the benefits of a 20% reduction in ambient air pollution concentration could prevent up to 25% of avoidable fatalities each year in all-causes, respiratory and cardiovascular categories. Furthermore, our findings can provide guidelines for future epidemiological investigations and policy decisions to achieve the SDGs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739428PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189909PLOS

Publication Analysis

Top Keywords

ambient air
40
air pollution
32
air
15
burden disease
12
ambient
10
mortality
10
pollution
9
attributed ambient
8
pollution thailand
8
air quality
8

Similar Publications

We report the synergistic use of Pd(OAc)₂ and Ag₂O for the direct C-H arylation of polyfluoroarenes with aryl iodides in DMF as the solvent. This method is straightforward, can be conducted in air, and does not require additional ligands, yielding fluorinated unsymmetrical biaryl products in up to 99%. Experimental studies and DFT calculations suggest that the formation of [(DMF)2PdII(C6F5)2] in DMF as a coordinating solvent does not inhibit the reaction, as the Pd complex reacts with aryl iodides by oxidative addition upon dissociation of a single DMF ligand to form [(DMF)PdIV(C6F5)2(Ar)(I)] before the desired arylation product is released.

View Article and Find Full Text PDF

Devices for assessing the quality of animal environments are important for maintaining production animals, thus improving animal well-being and mitigating pollutant emissions. Therefore, an IoT system was developed and preliminarily assessed across various livestock housing types, including those for pigs, dairy cows, and rabbits. This system measures and transmits key parameters, such as ambient temperature; relative humidity; light intensity; sound pressure; levels of carbon dioxide, ammonia, and hydrogen sulfide; and particulate matter and volatile organic compound concentrations.

View Article and Find Full Text PDF

Introduction: The developing brain, especially vulnerable during neuroplastic phases, is influenced by environmental and genetic factors. Understanding the impacts of air pollution on children's and young adults' mental health is an emerging research field.

Content: This review systematically examines the adverse associations of ambient air pollutants on mental health.

View Article and Find Full Text PDF

Background: There is growing evidence that the occurrence and severity of respiratory diseases in children are related to the concentration of air pollutants. Nonetheless, evidence regarding the association between short-term exposure to air pollution and outpatient visits for respiratory diseases in children remains limited. Outpatients cover a wide range of disease severity, including both severe and mild cases, some of which may need to be transferred to inpatient treatment.

View Article and Find Full Text PDF

Integrating energy donor and acceptor chromophores as ligands within one MOF for advanced artificial photosynthesis is of great interest but appears to be a major challenge. Herein, via a simple one-pot synthetic strategy, an energy acceptor porphyrin ligand 5,15-di(p-benzoato)porphyrin (HDPBP) was successfully integrated into an energy donor 1,4-naphthalenedicarboxylic acid (HNDC)-based MOF (UiO-66-NDC) to construct a mixed-ligand MOF, donated as UiO-66-NDC-HDPBP. Benefiting from the ample overlap between the emission spectrum of HNDC and the absorption spectrum of HDPBP, an efficient energy transfer (EnT) process from the donor HNDC to the acceptor HDPBP within UiO-66-NDC-HDPBP can occur and be captured by time-resolved spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!