The present in vitro study analyzed whether the hormones that affect the ovarian follicular steroidogenesis process also participate in the regulation of AQP1 mRNA and protein expression. Granulosa (Gc) and theca cells (Tc) of medium and large porcine ovarian follicles were exposed to follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) for 24 h in separated cells and co-cultures of these cells. Real-time PCR, Western blotting, immunofluorescence and volumetric analysis were then performed. Gonadotropins, PRL and GH had a stimulatory impact on AQP1 mRNA and protein expression in Gc and Tc of medium and large ovarian cells. Moreover, swelling assays, in response to a hypotonic environment, demonstrated the functional presence of AQPs in porcine Gc and Tc. Immunofluorescence analysis showed that AQP1 protein was mainly localized in the perinuclear region of the cytoplasm, endosomes and cell membranes of Gc and Tc from medium and large follicles. It seems possible that AQP1 present in Gc and Tc cells may be implicated not only in the regulation of water homeostasis required for follicle development but also in cell proliferation and migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795957 | PMC |
http://dx.doi.org/10.3390/ijms19010005 | DOI Listing |
Plants (Basel)
January 2025
Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain.
Iron (Fe) deficiency is among the most important agronomical concerns under alkaline conditions. Bicarbonate is considered an important factor causing Fe deficiency in dicot plants, mainly on calcareous soils. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.
Due to its high mechanical properties and low quench sensitivity, 7085 aluminum alloy is suitable for the aircraft industry. However, large cross-section forgings of 7085 alloy usually have over 40% anisotropy in mechanical behaviors, especially in the vertical direction. In this study, two-stage multi-directional forgings (MDFs) with different temperature combinations, isothermal medium-temperature composite MDF (MC-MDF) and isothermal hot MDF (H-MDF), were applied to 7085 aluminum alloy ingots.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
This study investigated the effects of various titanium nanoparticles (TiONPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO forms on the rhizosphere microbiota.
View Article and Find Full Text PDFBiomolecules
January 2025
Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland.
Polydeoxyribonucleotides (PDRNs) and polynucleotides (PNs) are similar DNA-derived biopolymers that have garnered significant scientific attention since the 1990s for their potential applications in wound healing and skin rejuvenation. These biopolymers exhibit a broad molecular weight (MW) range, typically spanning from 50 to 1500 kDa. However, recent studies have expanded this range to encompass fragments as small as 1 kDa and as large as 10,000 kDa.
View Article and Find Full Text PDFBiomolecules
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
Nanobodies have gained attention as potential therapeutic and diagnostic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their ability to bind and neutralize the virus. However, rapid, scalable, and robust production of nanobodies for SARS-CoV-2 remains a crucial challenge. In this study, we developed a visual and high-efficiency biomanufacturing method for nanobodies with by fusing the super-folder green fluorescent protein (sfGFP) to the N-terminus or C-terminus of the nanobody.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!