The adsorption behaviors of different constituents within bulk humic substances (HS) on two nanoparticles, TiO and ZnO, were examined by using two-dimensional correlation size exclusion chromatography (2D-CoSEC) and excitation emission matrix-parallel factor analysis (EEM-PARAFAC), which separated bulk HS into different size fractions and fluorescent components, respectively. Subtle changes in the size distributions of HS with increasing adsorbents were successfully identified and tracked via the 2D-CoSEC. From adsorption isotherm experiments, three different HS constituent groups with respect to sizes and fluorescence features were identified by the 2D-CoSEC and EEM-PARAFAC, respectively. The chromatographically separated HS size groups presented dissimilar adsorption behaviors in terms of adsorption affinity and isotherm nonlinearity. The sequence orders of adsorption, interpreted from the 2D-CoSEC, was consistent with those of the isotherm model parameters individually calculated for different HS size subfractions, signifying the promising application of 2D-CoSEC in obtaining an insight into the heterogeneous adsorption of HS in terms of molecular sizes. EEM-PARAFAC results also supported the major finding of the 2D-CoSEC as shown by the preferential adsorption of the fluorescent components associated with large molecular sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b04311DOI Listing

Publication Analysis

Top Keywords

molecular sizes
12
two-dimensional correlation
8
correlation size
8
size exclusion
8
exclusion chromatography
8
chromatography 2d-cosec
8
2d-cosec eem-parafac
8
adsorption
8
heterogeneous adsorption
8
humic substances
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!